已知:如图①,正方形ABCD中,E为对角线BD上一点,
过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
【小题1】(1)求证:EG=CG;
【小题2】(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
【小题3】(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)
【小题1】(1)证明:如图①,在Rt△FCD中,
∵ G为DF的中点,
∴CG=FD.…………………………………………..1分
同理,在Rt△DEF中,EG=FD.
∴ CG=EG.…………………………………………….2分
【小题2】(2)(1)中结论仍然成立,即EG=CG.…………….3分
证法一:如图②(一),连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.
在△DAG与△DCG中,
∵AD=CD,∠ADG=∠CDG,DG=DG,
∴△DAG≌△DCG.
∴ AG=CG.…………………………………………………..4分
在△DMG与△FNG中,
∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,
∴ △DMG≌△FNG.
∴ MG=NG ………………………………………………5分
在矩形AENM中,AM=EN.
在Rt△AMG与Rt△ENG中,
∵AM=EN, MG=NG,
∴ △AMG≌△ENG.
∴ AG=EG.
∴EG=CG. …………………………………………………… 6分
证法二:如图②(二),延长CG至M,使MG=CG,
连接MF,ME,EC,
在△DCG 与△FMG中,
∵ FG=DG,∠MGF=∠CGD,MG=CG,
∴ △DCG ≌△FMG.
∴ MF=CD,∠FMG=∠DCG. ………………………………..4分
∴ MF∥CD∥AB.
∴ .
在Rt△MFE与Rt△CBE中,……………………………………….5分
∵MF=CB,EF=BE,
∴ △MFE≌△CBE..
∴ .
∴ ∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°.
∴ △MEC为直角三角形.
∵ MG = CG,∴ EG=MC.
∴ .……………………………………………6分
【小题3】(3)如图③,(1)中的结论仍然成立,即EG=CG.
其他的结论还有:EG⊥CG. ………………………..7分
解析
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
7 | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
DG |
DP |
2 |
AP2+QC2 |
PQ2 |
2 |
A、①②③④ | B、①②③ |
C、①②④ | D、①③④ |
查看答案和解析>>
科目:初中数学 来源: 题型:
5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com