精英家教网 > 初中数学 > 题目详情
如图,已知AE、BD相交于点C,AC=AD,BC=BE,F、G、H分别是DC、CE、AB的中点。
求证:(1)HF=HG;
(2)∠FHG=∠DAC。
解:(1)如图①,连接AF、BG,
∵AC=AD,BC=BE,
F、G分别是DC、CE的中点,
∴AF⊥BD,BG⊥AE,
在直角三角形AFB中,
∵H是斜边AB中点
∴FH=AB,
同理可得HG=AB,
∴FH=HG,
(2)如图②,∵△FMH≌△HNG,
∴∠MHF=∠NGH,∠MFH=∠NHG,
∵四边形MHNC是平行四边形
∴∠FHG=∠MHN-(∠MHF+∠NHG) 
=∠MHN-(180°-∠FMH)
=∠MHN+∠FMH-180°
=∠ACN+∠FMH-180°
=180°+∠FMC-180°
=∠FMC
=∠DAC 
∴∠FHG=∠DAC。 




练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知AE、BD相交于点C,AC=AD,BC=BE,F、G、H分别是DC、CE、AB的中点.精英家教网
求证:(1)HF=HG;(2)∠FHG=∠DAC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AE,BD分别是三角形ABC的BC,AC边上的高,F是DE的中点,G是AB的中点,试说明GF与DE的位置关系.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AE,BD分别是三角形ABC的BC,AC边上的高,F是DE的中点,G是AB的中点,试说明GF与DE的位置关系.
精英家教网

查看答案和解析>>

科目:初中数学 来源:第24章《图形的相似》中考题集(30):24.4 中位线(解析版) 题型:解答题

如图,已知AE、BD相交于点C,AC=AD,BC=BE,F、G、H分别是DC、CE、AB的中点.
求证:(1)HF=HG;(2)∠FHG=∠DAC.

查看答案和解析>>

同步练习册答案