精英家教网 > 初中数学 > 题目详情
9.如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第2014次“移位”后,则他所处顶点的编号是3.

分析 根据“移位”的特点确定出前几次的移位情况,从而找出规律,然后解答即可.

解答 解:根据题意,小宇从编号为2的顶点开始,第1次移位到点4,
第2次移位到达点3,
第3次移位到达点1,
第4次移位到达点2,
…,
依此类推,4次移位后回到出发点,
2014÷4=503…2.
所以第2014次移位为第504个循环组的第2次移位,到达点3.
故答案为:3.

点评 此题对图形变化规律的考查,根据“移位”的定义,找出每4次移位为一个循环组进行循环是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.若$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$,$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$都是方程ax-by=4的解,求代数式(b-a)2012的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.因式分解:(x+1)(x+2)+$\frac{1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.在一次篮球选拔赛中,有12支球队参加选拔,每一队都要与另外的球队比赛一场,记分规则为:胜一场3分,平一场记1分,负一场记0分,比赛结束时,某球队所胜场数是所负场数的2倍,共得20分,则这支球队胜,负各几场?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,等边△ABC中,D、E分别在边AB、AC上,且AD=CE,连接并延长BE、CD,交点为P,并使BG=CF,直线GA、BF交于点Q,过点A作AH⊥BF交BF延长线于H.
(1)如图(1),求证:∠GAH=∠BPC+30°;
(2)如图(2),在(1)的条件下,若D为AB中点,试探究线段QD与线段QC的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.阅读下面材料:
小乔遇到了这样一个问题:如图1,在Rt△ABC中,∠C=90°,D,E分别为CB,CA边上的点,且AE=BC,BD=CE,BE与AD的交点为P,求∠APE的度数;

小乔发现题目中的条件分散,想通过平移变换将分散条件集中,如图2,过点B作BF∥AD且BF=AD,连接EF,AF,从而构造出△AEF与△CBE全等,经过推理和计算能够使问题得到解决(如图2).
请回答:∠APE的度数为45°.
参考小乔同学思考问题的方法,解决问题:
如图3,AB为⊙O的直径,点C在⊙O上,D、E分别为CB,CA上的点,且AE=$\frac{1}{2}$BC,BD=$\frac{1}{2}CE$,BE与AD交于点P,在图3中画出符合题意的图形,并求出sin∠APE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,?ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=3,则AB的长是$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.抛物线y=1-x2与y轴交于点A,经过点B(0,-1)作y轴的垂线交上述抛物线于点C,D,点T是线段CD上一点,横坐标为t,连接AT交x轴于点N,点M是上述抛物线上一动点(M不与点A重合且在CD的上方),其横坐标为m,延长MN至点G,使NM=NG.
(1)用m,t表示点G 的坐标;(图1供参考)
(2)设以点T为顶点的另一条抛物线恰好经过点G,M,且点M到CD的距离HM=0.25,说明点G是否在抛物线y=1-x2上,并求MT的长度.(图2供参考)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.己知$\frac{a}{3}$=$\frac{b}{4}$=$\frac{c}{5}$,求$\frac{a+2b-3c}{2a+b-c}$的值.

查看答案和解析>>

同步练习册答案