精英家教网 > 初中数学 > 题目详情

已知四边形ABCD中.AD=AB,AD∥BC,∠A=90°,M为边AD的中点,F为边BC上一点,连接MF,过射点作ME⊥MF,交边AB于点E
(1)如图1,当∠ADC=90°时,求证:4AE+2CF=CD;
(2)如图2,当∠ADC=135°时,线段AE、CF、CD的数量关系为______
(3)如图3.在(1)的条件下,连接EF、EC,EC与FM相交于点K,线段FM关于FE对称 的线段与AB相交于点N.若NE=数学公式,FC=AE,求MK的长.

(1)证明:过点F作FN⊥AD,垂足为N.
∵AD∥BC,∠A=90°,
∴∠B=∠A=90°,
∵∠ADC=90°,AD=AB,
∴四边形CDAB是正方形,
∴NF=CD=AD.
∵M为边AD的中点,
∴AD=2AM=2MD,
∴NF=CD=2AM.
在△AME与△MFN中,
∵∠A=90°=∠MNF=∠EMF,
∴∠AME+∠NMF=90°=∠NMF+∠MFN,
∴∠AME=∠MFN,
∴△AME∽△NFM,
==
∴MN=2AE,
∵MD=AD=CD=MN+DN=2AE+FC,
∴2MD=4AE+2CF,
∴4AE+2FC=CD;

(2)解:如图2,过点C作CD′⊥AD于D′,过点F作FN⊥AD于N,
则四边形ABFN与四边形FND′C都是矩形,
∴D′C=NF=AB=AD,ND′=FC.
∵∠ADC=135°,
∴∠D′DC=45°,
∵∠CD′D=90°,
∴△CD′D是等腰直角三角形,
∴CD′=DD′=CD,
∴AB=CD.
在△AME与△NFM中,
∵∠A=∠MNF=90°,∠AME=∠MFN=90°-∠NMF,
∴△AME∽△NFM,
==
∴MN=2AE,
∴MD+DD′-ND′=2AE,
∵MD=AD=AB=×CD=CD,DD′=CD,ND′=FC,
CD+CD-FC=2AE,
∴8AE+4FC=3CD;

(3)解:如图3,AE=FC=a,则CD=4AE+2FC=6a,
∴AM=DM=3a,AD=CD=6a,
在Rt△AME中,EM2=AM2+AE2
∴EM=a,
由(1)得FM=2EM=2a.
在Rt△MEF中,tan∠MFE===tan∠EFN.
过N作NP⊥EF于P,设NP=x,则PF=2x,
∵BE=AB-AE=BC-FC=BF,∠B=90°,
∴△BEF是等腰直角三角形,
∴∠BEF=45°,
在△ENP中,NE=
∴NP=×==x=EP,
∵EF=EP+PF=3x=5=BE=×5a,
∴a=1,
∵EM2+FM2=EF2
∴FM=2
延长CE、DA相交于点R,
在Rt△AER中,∵AR∥BC,
∴∠R=∠ECB,
∵∠AER=∠BEC,
∴△AER∽△BEC,
===
∴AR=a,
∵RM=AR+AM=a.
∵RM∥FC,
∴∠R=∠KCF,
∵∠RKM=∠CKF,
∴△RMK∽△CFK,
===
∵MK+FK=FM=2
∴MK=FM=
分析:(1)过点F作FN⊥AD,垂足为N,先证明四边形ABCD是正方形,再由两角对应相等的两三角形相似得出△AME∽△NFM,根据相似三角形的性质得出边的关系,从而得出结论;
(2)过点C作CD′⊥AD于D′,过点F作FN⊥AD于N,则四边形ABFN与四边形FND′C都是矩形,D′C=NF=AB=AD,ND′=FC.证明△CD′D是等腰直角三角形,得出CD′=DD′=CD,AB=CD,再证明△AME∽△NFM,得到MN=2AE,即MD+DD′-ND′=2AE,然后将MD=CD,DD′=CD,ND′=FC代入,即可得出8AE+4FC=3CD;
(3)设AE=FC=a,则CD=4AE+2FC=6a,AM=DM=3a,AD=CD=6a,在Rt△AME中,由勾股定理求得EM=a,则FM=2a,在Rt△MEF中,根据正切函数的定义得到tan∠MFE===tan∠EFN.再过N作NP⊥EF于P,设NP=x,则PF=2x,证明△BEF是等腰直角三角形,得出∠BEF=45°,在△ENP中,求出NP==x=EP,由EF=EP+PF,得出a=1.在△EFM中由勾股定理求出FM=2,延长CE、DA相交于点R,由两角对应相等的两三角形相似得出△AER∽△BEC,根据相似三角形的性质得出AR=a,则RM=AR+AM=a,然后证明△RMK∽△CFK,得出==,进而求出MK=
点评:本题考查了矩形、等腰直角三角形、正方形、相似三角形的判定与性质,勾股定理,锐角三角函数的定义,综合性较强,难度较大.准确地作出辅助线,运用数形结合思想是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
45

求S△ABD:S△BCD

查看答案和解析>>

科目:初中数学 来源: 题型:

26、已知四边形ABCD中,AB=BC=CD,∠B=90°,根据这样的条件,能判定这个四边形是正方形吗?若能,请你指出判定的依据;若不能,请举出一个反例(即画出一个四边形满足上述条件,但不是正方形),并指出若再添加一个什么条件,就可以判定这个四边形是正方形,你能指出几种情况吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知四边形ABCD中,给出下列四个论断:(1)AB∥CD,(2)AB=CD,(3)AD=BC,(4)AD∥BC.以其中两个论断作为条件,余下两个作为结论,可以构成一些命题.在这些命题中,正确命题的个数有(  )
A、2个B、3个C、4个D、6个

查看答案和解析>>

科目:初中数学 来源: 题型:

选做题:(A)已知四边形ABCD中,AD∥BC,对角线AC、BD交于点O,∠OBC=∠OCB,并且
 
,求证:四边形ABCD是
 
形.(要求在已知条件中的横线上补上一个条件
 
,在求证中的横线上添上该四边形的形状,然后画出图形,予以证明,证明时要用上所有条件)
(B)某市市委、市府2001年提出“工业立市”的口号,积极招商引资,财政收入稳步增长,各年度财政收入如下表:
年 份 2001 2002 2003 2004
财政收入
单位(亿元)
10 10.5 12 14.5
按这种增长趋势,请你算一算2006年该市的财政收入是多少亿元.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形ABCD中,E、F、G、H分别为AB、BC、CD、DA的中点,
①求证:四边形EFGH是平行四边形.
②探索下列问题,并选择一个进行证明.
a.原四边形ABCD的对角线AC、BD满足
AC⊥BD
AC⊥BD
时,四边形EFGH是矩形.
b.原四边形ABCD的对角线AC、BD满足
AC=BD
AC=BD
时,四边形EFGH是菱形.
c.原四边形ABCD的对角线AC、BD满足
AC⊥BD且AC=BD
AC⊥BD且AC=BD
时,四边形EFGH是正方形.

查看答案和解析>>

同步练习册答案