精英家教网 > 初中数学 > 题目详情
17.一艘轮船在小岛A的北偏东60°距小岛80海里的B处,沿正西方向航行2小时后到达小岛的北偏西45°的C处,则该船行驶的速度为20+20$\sqrt{3}$海里/小时.

分析 设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40$\sqrt{3}$=2x,解方程即可.

解答 解:如图所示:
设该船行驶的速度为x海里/时,
3小时后到达小岛的北偏西45°的C处,
由题意得:AB=80海里,BC=2x海里,
在直角三角形ABQ中,∠BAQ=60°,
∴∠B=90°-60°=30°,
∴AQ=$\frac{1}{2}$AB=40,BQ=$\sqrt{3}$AQ=40$\sqrt{3}$,
在直角三角形AQC中,∠CAQ=45°,
∴CQ=AQ=40,
∴BC=40+40$\sqrt{3}$=3=2x,
解得:x=20+20$\sqrt{3}$.
即该船行驶的速度为20+20$\sqrt{3}$海里/时;
故答案为:20+20$\sqrt{3}$.

点评 本题考查了解直角三角形的应用中的方向角问题、等腰直角三角形的性质、含30°角的直角三角形的性质等知识;通过解直角三角形得出方程是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.如图,线段AB、CD分别表示甲、乙两建筑物的高,BA⊥AD,CD⊥DA,垂足分别为A、D.从D点测到B点的仰角α为60°,从C点测得B点的仰角β为30°,甲建筑物的高AB=30米.
(1)求甲、乙两建筑物之间的距离AD.
(2)求乙建筑物的高CD.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.不等式组$\left\{\begin{array}{l}{2x+9>6x+1}\\{x-k<1}\end{array}\right.$的解集为x<2,则k的取值范围为(  )
A.k>1B.k<1C.k≥1D.k≤1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在梯形ABCD中,AB∥DC,∠BCD=90°,且AB=2,BC=3,tan∠ADC=3.
(1)求证:DC=BC;
(2)E是梯形内的一点,F是梯形外的一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,一个书架上的方格中放着四本厚度和长度相同的书,其中左边两边上紧贴书架方格内侧竖放,右边两本书自然向左斜放,支撑点为C,E,右侧书角正好靠在方格内侧上,若书架方格长BF=40cm,∠DCE=30°.
(1)设一本书的厚度为acm,则EF=$\frac{7\sqrt{3}}{6}$acm;
(2)若书的长度AB=20cm,求一本书的厚度(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.某中学开展“绿化家乡、植树造林”活动,为了解全校植树情况,对该校甲、乙、丙、丁四个班级植树情况进行了调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,完成下列问题:

(1)这四个班共植树200棵;
(2)补全两幅统计图;
(3)求图1中“甲”班级所对应的扇形圆心角的度数;
(4)若四个班级所种植的树成活了190棵,全校共植树2000棵,请你估计全校种植的树中成活的树有多少棵.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.游泳是一项深受青少年喜爱的体育活动,学校为了加强学生的安全意识,组织学生观看了纪实片“孩子,请不要私自下水”,并于观看后在本校的2000名学生中作了抽样调查.请根据下面两个不完整的统计图回答以下问题:

(1)这次抽样调查中,共调查了400名学生;
(2)“家长陪同时会”的学生所占比例为57.5%,“一定不会”的学生有100人;
(3)根据抽样调查的结果,估算该校2000名学生中大约有多少人“一定会下河游泳”?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.为了落实漳州市教育局关于全市中小学生每天阅读1小时的文件精神.某校对七年级(3)班全体学生一周到图书馆的次数做了调查统计,以下是调查过程中绘制的还不完整的两个统计图.请你根据统计图表中的信息,解答下列问题:
(1)求图表中m,n的值;
(2)该年级学生共有300人,估计这周到图书馆的次数为“4次及以上”的学生大约有多少人?
七年级(3)班学生到图书馆的次数统计表
到图书馆的
次数
0次1次2次3次4次及
以上
人数510m812

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点D在AB上,以BD为直径的⊙O切AC于点E,连接DE并延长,交BC的延长线于点F.
(1)求证:△BDF是等边三角形;
(2)连接AF、DC,若BC=3,写出求四边形AFCD面积的思路.

查看答案和解析>>

同步练习册答案