精英家教网 > 初中数学 > 题目详情

【题目】如图,需在一面墙上绘制几个相同的抛物线型图案按照图中的直角坐标系,最左边的抛物线可以用(a0)表示已知抛物线上B,C两点到地面的距离均为m,到墙边OA的距离分别为m,m

(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;

(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?

【答案】(1),1;(2)5

【解析】

试题分析:(1)根据题意求得B,C的坐标,解方程组求得拋物线的函数关系式;根据抛物线的顶点坐标公式得到结果;

(2)令y=0,即﹣x2+2x=0,解方程得到x1=0,x2=2,即可得到结论.

试题解析:(1)根据题意得:B(),C(),把B,C代入,解得:,∴拋物线的函数关系式为

∴图案最高点到地面的距离==1;

(2)令y=0,即,∴,∴10÷2=5,∴最多可以连续绘制5个这样的拋物线型图案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=10,BC=8,AB的垂直平分线分别交AC、AB于点D、E.则AD的长度为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在ABCD中,AE⊥BC于E,E恰为BC的中点,tanB=2。

(1)求证:AD=AE;

(2)如图2,点P在BE上,作EF⊥DP于点F,连结AF,求证:DF-EF=AF;

(3)请你在图3中画图探究:当P为射线EC上任意一点(P不与点E重合)时,作EF⊥DP于点F,连结AF,线段DF、EF与AF之间有怎样的数量关系?直接写出你的结论为____________。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若两个相似三角形的周长之比为1∶4,则它们的面积之比为( )

A.1∶2B.1∶4C.1∶8D.1∶16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在长和宽分别是 的矩形纸片的四个角上都剪去一个边长为 的小正方形,折成一个无盖的纸盒.

(1)用abx表示纸片剩余部分的面积;
(2)当a=16,b=12,且剪去部分的面积等于剩余部分的面积的一半时,求小正方形的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将ADE沿AE对折至AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①ABG≌△AFG;②BG=GC;③EG=DE+BG;④AGCF;⑤S△FGC=3.6.其中正确结论的个数是(

A.2 B.3 C.4 D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,已知△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且B点和C点在AE的异侧,BD⊥AE于D点,CE⊥AE与E点.

(1)求证:BD=DE+CE
(2)若直线AE绕点A旋转到图2所示的位置时(BD<CE)其余条件不变,问BD 与DE,CE的关系如何?请予以证明.

(3)若直线AE绕点A旋转到图3所示的位置时(BD>CE)其余条件不变,问BD 与DE,CE的关系如何?直接写出结果,不需证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O的直径为4,点O到直线l的距离为2,则直线l与⊙O的位置关系是

A.相交B.相切C.相离D.无法判断

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的收费标准如下表:

例如:某户居民1月份用水8立方米,应收水费为2×6+4×(8-6)=20(元).
请根据上表的内容解答下列问题:
(1)若某户居民2月份用水5立方米,则应收水费元;
(2)若某户居民3月份交水费36元,则用水量为立方米;
(3)若某户居民4月份用水a立方米(其中6<a<10),请用含a的代数式表示应收水费元.
(4)若某户居民 5、6 两个月共用水18立方米(6月份用水量超过了10立方米),设5月份用水x立方米,请用含x的代数式表示该居民5、6两个月共交水费多少元?

查看答案和解析>>

同步练习册答案