【题目】某校在八年级(1)班学生中开展对于“我国国家公祭日”知晓情况的问卷调查.
问卷调查的结果分为A、B、C、D四类,其中A类表示“非常了解”;B类表示“比较了解”;C类表示“基本了解”;D类表示“不太了解”;班长将本班同学的调查结果绘制成下列两幅不完整的统计图.
请根据上述信息解答下列问题:
(1)该班参与问卷调查的人数有 人;补全条形统计图;
(2)求出C类人数占总调查人数的百分比及扇形统计图中类所对应扇形圆心角的度数.
【答案】(1)50;(2)108°.
【解析】试题分析:(1)用B类的人数除以其所占的百分比可得到样本容量;用样本容量减去A、B、D类的人数可求得C类的人数,进而补全条形统计图;
(2)用C类人数除以总人数得到C类人数占总调查人数的百分比;用A类人数除以总人数得到A类所占的百分比,然后乘以360°,即可得出A类所对应扇形圆心角的度数.
试题解析:解:(1)该班参与问卷调查的人数有:20÷40%=50(人),C类的人数为:50﹣15﹣20﹣5=10(人),条形统计图补充如下:
(2)C类人数占总调查人数的百分比是:10÷50=20%,扇形统计图中A类所对应扇形圆心角的度数是:15÷50×360°=108°.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DC;③DB=DE;④∠BDE=∠BCA.其中正确结论的个数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°-7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=76°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把四块长为a,宽为b的长方形木板围成如图所示的正方形,请解答下列问题:
(1)按要求用含a,b的式子表示空心部分的正方形的面积S(结果不要化简,保留原式):
①用大正方形面积减去四块木板的面积表示:S= ;
②直接用空心部分的正方形边长的平方表示:S= ;
(2)由①、②可得等式 ;
(3)用整式的乘法验证(2)中的等式成立.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.
(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;
(2)如图②,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是( )
A.平均数是15 B.众数是10 C.中位数是17 D.方差是
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1: 2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把一个菱形绕着它的对角线的交点旋转,旋转前后的两个菱形构成一个“星形”(阴影部分).若菱形的一个内角为,边长为,则该“星形”的面积是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com