精英家教网 > 初中数学 > 题目详情
如图,△ABC为等边三角形,BD是中线,延长BC到E,使CE=CD,若△ABC的周长为18,BD=a,则△BDE的周长为(  )
分析:根据等边三角形的性质可得CD=
1
2
AC,∠CBD=30°,再根据等腰三角形两底角相等和三角形的一个外角等于与它不相邻的两个内角的和列式求出∠E=30°,然后求出∠CBD=∠E,根据等角对等边可得BD=DE,然后根据三角形周长的定义列式计算即可得解.
解答:解:∵△ABC的周长为18,
∴BC=AC=18÷3=6,
∵△ABC为等边三角形,BD是中线,
∴CD=
1
2
AC=
1
2
×6=3,∠CBD=
1
2
×60°=30°,
∵CE=CD,
∴∠E=∠CDE=
1
2
×60°=30°,
∴∠CBD=∠E,
∴BD=DE,
∴△BDE的周长=6+3+a+a=9+2a.
故选D.
点评:本题考查了等边三角形的性质,等腰三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,△ABC为等边三角形,P为三角形内一点,将△ABP绕A点逆时针旋转60°后与△ACP′重合,若AP=3,则PP′=
3

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.
(1)求证:△ACD≌△CBF;
(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD与Q,PQ=4,PE=1
(1)求证∠BPQ=60°
(2)求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等边三角形,D、F分别为CB、BA上的点,且CD=BF,以AD为一边作等边三角形ADE.
①△ACD与△CBF是全等三角形吗?说说你的理由.
②ED=FC吗?说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等边△,EC=ED,∠CED=120゜,P为BD的中点,求证:AE=2PE.

查看答案和解析>>

同步练习册答案