精英家教网 > 初中数学 > 题目详情
19.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1,正八边形外侧八个扇形(有阴影部分)面积之和为S2,则$\frac{{S}_{1}}{{S}_{2}}$=(  )
A.$\frac{3}{5}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.1

分析 先根据正多边形的内角和公式可求正八边形的内角和,根据周角的定义可求正八边形外侧八个扇形(阴影部分)的内角和,再根据半径相等的扇形面积与圆周角成正比即可求解.

解答 解:∵正八边形的内角和为(8-2)×180°=6×180°=1080°,
正八边形外侧八个扇形(阴影部分)的内角和为360°×8-1080°=2880°-1080°=1800°,
∴$\frac{{S}_{1}}{{S}_{2}}$=$\frac{1080°}{1800°}$=$\frac{3}{5}$.
故选:A.

点评 此题考查了扇形面积的计算,求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

9.下列四张正方形硬纸片,分别将阴影部分剪去后,再沿虚线折叠,其中可以围成一个封闭长方体包装盒的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,△ABC中,AB=AC=8,D在AB上,E在AB的延长线上,∠ECB=∠DCB,AE=12.
(1)求证:△ADC∽△ACE;
(2)求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,AB,CD都垂直于x轴,垂足分别为B,D,若A(6,3),C(2,1),
则△OCD与四边形ABDC的面积比为(  )
A.1:2B.1:3C.1:4D.1:8

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如果点M、N在数轴上分别表示实数m,n,在数轴上M,N两点之间的距离表示为MN=m-n(m>n)或n-m(m<n)或|m-n|.利用数形结合思想解决下列问题:已知数轴上点A与点B的距离为16个单位长度,点A在原点的左侧,到原点的距离为26个单位长度,点B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.
(1)点A表示的数为-26,点B表示的数为-10,点C表示的数为10.
(2)用含t的代数式表示P到点A和点C的距离:PA=t,PC=36-t.
(3)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.
①在点Q向点C运动过程中,能否追上点P?若能,请求出点Q运动几秒追上.
②在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.小丽不小心打碎了一块玻璃(如图),玻璃店老板根据涂总阴影部分重新划出一块与原来的玻璃完全相同的玻璃,其根据是(  )
A.SASB.SSSC.ASAD.AAS

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AD=2,CD=4.
(1)求证:∠A=∠BCD;
(2)求tanA的值;
(3)求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图矩形ABCD是一张标准纸,长BC=AD=$\sqrt{2}$,AB=CD=1,把△BCF沿CF对折使点B恰好落在边AD上的点E处,再把△DCH沿CH对折使点D落在线段CE上的点G处.
(1)求证:△AEF≌△GHE;
(2)利用该图形试求tan22.5°的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.已知对所有的实数x,|x|+$\sqrt{x-1}$≥m-|x-2|恒成立,则m可取得的最大值为2.

查看答案和解析>>

同步练习册答案