精英家教网 > 初中数学 > 题目详情
已知直线,求:
(1)直线与轴,轴的交点坐标;
(2)若点(a,1)在图象上,则a值是多少?
(1)(-1.5,0)、(0,3);(2)-1.

试题分析:(1)直线与x轴交点的纵坐标等于零;直线与y轴交点的横坐标等于零;
(2)把该点代入已知函数解析式,列出关于a的方程,通过解方程来求a的值.
试题解析:(1)令y=0,则2x+3=0,解得:x=-1.5;
令x=0,则y=3.
所以,直线与x轴,y轴的交点坐标坐标分别是(-1.5,0)、(0,3);
(2)把(a,1)代入y=2x+3,得到2a+3=1,即a=-1.
答:(1)直线与x轴,y轴的交点坐标坐标分别是(-1.5,0)、(0,3);
(2)若点(a,1)在图象上,则a值是-1.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

小文家与学校相距1000米,某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校,下图是小文与家的距离y(米)关于时间x(分钟)的函数图象。请你根据图象中给出的信息,解答下列问题:

(1)小文走了多远才返回家拿书?
(2)求线段AB所在直线的函数解析式;
(3)当x=8分钟时,求小文与家的距离。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,双曲线和直线y=kx+b交于A,B两点,点A的坐标为(﹣3,2),BC⊥y轴于点C,且OC=6BC.

(1)求双曲线和直线的解析式;
(2)直接写出不等式的解集.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:
方案1:从包装盒加工厂直接购买,购买所需的费用y1与包装盒数x满足如图的函数关系。
方案2:租凭机器自己加工,所需费用y2(包括租凭机器的费用和生产包装盒的费用)
与包装盒数满足如图的函数关系。

根据图象回答下列问题:
(1)方案1中每个包装盒的价格是多少元?
(2)方案2中租凭机器的费用是多少元?生产一个包装盒的费用是多少元?
(3)请分别求出y1,y2,与x的函数表达式
(4)如果你是决策者,你认为应该选择哪种方案更省钱?并说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知一次函数经过哪几个象限(  )
A.一、二、三B.一、三、四C.一、二、四D.二、三、四

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数的图象与x轴交于两个不同的点A(﹣2,0)、B(4,0),与y轴交于点C(0,3),连接BC、AC,该二次函数图象的对称轴与x轴相交于点D.

(1)求这个二次函数的解析式、
(2)点D的坐标及直线BC的函数解析式;
(3)点Q在线段BC上,使得以点Q、D、B为顶点的三角形与△ABC相似,求出点Q的坐标;
(4)在(3)的条件下,若存在点Q,请任选一个Q点求出△BDQ外接圆圆心的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)观察与发现:将矩形纸片AOCB折叠,使点C与点A重合,点B落在点B′处(如图),折痕为EF.小明发现△AEF为等腰三角形,你同意吗?请说明理由.

(2)实践与应用:以点O为坐标原点,分别以矩形的边OC、OA为x轴、y轴建立如图所示的直角坐标系,若顶点B的坐标为(9,3),请求出折痕EF的长及EF所在直线的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知函数的图像交于点P(-2,-5),则根据图像可得不等式的解集是     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某校实行学案式教学,需印制若干份数学学案。印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要。两种印刷方式的费用y(元)与印刷份数x(份)之间的函数关系如图所示:

(1)填空:甲种收费方式的函数关系式是   .
乙种收费方式的函数关系式是   .
(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算。

查看答案和解析>>

同步练习册答案