精英家教网 > 初中数学 > 题目详情
如图所示,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,BF⊥AE于F,求证:BP=2PF.
考点:全等三角形的判定与性质,等边三角形的性质,含30度角的直角三角形
专题:证明题
分析:首先证△ABD≌△CAE,推出∠ABD=∠CAE,求出∠BPF=∠APD=60°,得出∠PBF=30°,根据含30度角的直角三角形性质求出即可.
解答:解:∵△ABC是等边三角形,
∴AB=AC,
∠BAC=∠C,
在△ABD和△CAE中,
AB=AC
∠BAD=∠C
AD=CE

∴△ABD≌△CAE,
∴∠ABD=∠CAE,
∴∠APD=∠ABP+∠PAB=∠BAC=60°,
∴∠BPF=∠APD=60°,
在Rt△BFP中,∠PBF=30°,
∴BP=2PF,
点评:本题考查了等边三角形性质,全等三角形的性质和判定,三角形外角性质,含30度角的直角三角形性质的应用,关键是求出∠PBF=30°.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如果二次函数y=ax2+bx+c的图象的顶点坐标是(2,4),且直线y=x+4依次与y轴和抛物线相交于P、Q、R三点,PQ:QR=1:3,则这个二次函数解析式为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,∠BAC的平分线AD交BC的中垂线DE于D,E为垂足,过D作DM⊥AB于M,DN⊥AC交AC的延长线于N,求证:BM=CN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在四边形ABCD中,DE∥BC,BD=CD,∠BCE=90°,以BD为直径的⊙O交CE于F、G,交BC于M.
(1)求证:BC=2DE;(2)求证:EF=CG.

查看答案和解析>>

科目:初中数学 来源: 题型:

点A,点B在双曲线y=
4
x
上,点C、点D在双曲线y=
1
x
上,AC∥BD,且AC=2BD,则四边形ACBD面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形ABCD,E是AB中点,F是CD中点,P是BD对角线上一点,EP延长线交AD延长线于点M,PF延长线交BC延长线于点N,证明:直线EF平分MN.

查看答案和解析>>

科目:初中数学 来源: 题型:

要把由5个小正方形组成的十字形纸板(如图)剪开,使剪成的若干块能够拼成一个大正方形.
(1)如果剪4刀,应如何剪拼?
(2)少剪几刀,也能拼成一个大正方形吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是⊙O的直径,BC是弦,OD⊥BC于点E,交于点D.
(1)若BC=8,ED=2,求⊙O的半径;
(2)连接CD,设∠BDC=α,∠ABC=β,探究α与β之间的关系式,并给予适当的说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

若∠A=41°,则cosA的大致范围是(  )
A、0<cosA<1
B、
1
2
<cosA<
2
2
C、
2
2
<cosA<
3
2
D、
3
2
<cosA<1

查看答案和解析>>

同步练习册答案