分析 (1)先确定出OA=OB=6,从而求得△ABO的面积.
(2)先判断出△DEM≌△BDO得出EM=DO,MD=OB=OA=6,进而判断出AM=EM,即可得出∠OAF=45°,即可得出点F坐标,最后用待定系数法得出直线EA解析式.
(3)由已知可在线段OA上任取一点N,又由AF是∠OAE的平分线,再在AE作关于OF的对称点N′,当点N运动时,ON′最短为点O到直线AE的距离.由已知∠OAE=30°,得直角三角形,OA=6,所以得OM+NM=3.
解答 解:(1)∵直线AB与x轴交于点A(-6,0),与y轴交于B(0,6).
∴OA=6,OB=6,
∴S△ABO=$\frac{1}{2}$OA•OB=$\frac{1}{2}$×6×6=18;
(2)如图1,过点E作EM⊥x轴于M,
∴∠MDE+∠DEM=90°,
∵△BDE是等腰直角三角形,
∴DE=DB,∠BDE=90°,
∴∠MDE+∠BDO=90°,
∴∠DEM=∠BDO,
在△DEM和△BDO中,$\left\{\begin{array}{l}{∠DME=∠BOD=90°}\\{∠DEM=∠BDO}\\{DE=DB}\end{array}\right.$,
∴△DEM≌△BDO,
∴EM=DO,MD=OB=OA=6,
∴AM=DM+AD=6+AD,
EM=OD=OA+AD=6+AD,
∴EM=AM,
∴∠MAE=45°=∠OAF,
∴OA=OF,
∴F(0,-6)
设直线EA解析式为y=kx-6,
∵A(-6,0),
∴-6k-6=0,
∴k=-1,
∴直线EA解析式为y=-x-6;
(3)如图2
过点O作OG⊥AE于G,交AF于M,过点G作GN⊥OA,
连接MN,在线段OA上任取一点N,
∴OM+NM的值最小的是点O到点N关于直线AF对称点N′之间线段的长.
当点N运动时,ON′最短为点O到直线AE的距离,即点O到直线AE的垂线段的长.
在Rt△OAG中,∠OAE=30°,OA=6,
∴OG=3,
∴OM+MN的最小值为3.
点评 此题是一次函数综合题,主要考查了待定系数法,三角形面积公式,全等三角形的判断和性质,对称的性质,解本题的关键是AM=EM,是一道比较简单的中考常考题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com