精英家教网 > 初中数学 > 题目详情
(2012•瑶海区三模)如图,某电信公司计划修建一条连接B、C两地的电缆.测量人员在山脚A点测得B、C两地的仰角分别为30°、45°,在B处测得C地的仰角为60°,已知C地比A地高200m,求电缆BC的长.(结果可保留根号)
分析:首先分析图形:根据题意构造直角三角形;本题涉及到两个直角三角形,应利用其公共边构造方程关系式,进而可解即可求出答案.
解答:解:过B点分别作BE⊥CD、BF⊥AD,垂足分别为E、F.
设BC=xm.
∵∠CBE=60°,
∴BE=
1
2
x,CE=
3
2
x.
∵CD=200,
∴DE=200-
3
2
x.
∴BF=DE=200-
3
2
x,DF=BE=
1
2
x.
∵∠CAD=45°,
∴AD=CD=200.
∴AF=200-
1
2
x.
在Rt△ABF中,tan30°=
BF
AF
=
200-
3
2
x
200-
1
2
x

解得x=200(
3
-1)(m).
答:电缆BC至少(200
3
-200)m
点评:本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•瑶海区三模)下列二次函数解析式中,其图象与y轴的交点在x轴下方的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•瑶海区三模)如图,直径为10的⊙A经过点C和点O,点B是y轴右侧⊙A优弧上一点,∠OBC=30°,则点C的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•瑶海区三模)姚明将带队来我市体育馆进行表演比赛,市体育局在策划本次活动,在与单位协商团购票时推出两种方案.设购买门票数为x(张),总费用为y(元).
方案一:若单位赞助广告费8000元,则该单位所购门票的价格为每张50元;(总费用=广告赞助费+门票费)
方案二:直接购买门票方式如图所示.
解答下列问题:
(1)方案一中,y与x的函数关系式为
y=8000+50x
y=8000+50x

方案二中,当0≤x≤100时,y与x的函数关系式为
y=80x
y=80x

当x>100时,y与x的函数关系式为
y=100x-2000
y=100x-2000

(2)如果购买本场篮球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;
(3)甲、乙两单位分别采用方案一、方案二购买本场篮球赛门票共700张,花去总费用计56000元,求甲、乙两单位各购买门票多少张.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•瑶海区三模)已知抛物线y=ax2+bx+c(a≠0)过点A(-3,0),B(1,0),C(0,3)三点.
(1)求该抛物线的函数关系式;
(2)若抛物线的顶点为P,连接PA、AC、CP,求△PAC的面积;
(3)过点C作y轴的垂线,交抛物线于点D,连接PD、BD,BD交AC于点E,判断四边形PCED的形状,并说明理由.

查看答案和解析>>

同步练习册答案