精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1,得∠A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2,∠A2013BC的平分线与∠A2013CD的平分线交于点A2014,得∠A2014CD,则∠A2014=_____

【答案】.

【解析】

利用角平分线的性质、三角形外角性质,易证∠A1A,进而可求∠A1,由于∠A1A,∠A2A1A,…,以此类推可知∠A2014A°.

A1B平分∠ABCA1C平分∠ACD,∴∠A1BCABC,∠A1CAACD

∵∠A1CD=A1+A1BC,即ACD=A1ABC,∴∠A1(∠ACD﹣∠ABC).

∵∠A+ABC=ACD,∴∠A=ACD﹣∠ABC,∴∠A1A,∠A2A1A,…,以此类推可知∠A2014A°.

故答案为:°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y=(x>0)过点A(3,4),直线ACx轴交于点C(6,0),过点Cx轴的垂线BC交反比例函数图象于点B.

(1)求k的值与B点的坐标;

(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y1=ax2x+cx轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GMx轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2

(1)求抛物线y2的解析式;

(2)如图2,在直线l上是否存在点T,使TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;

(3)点P为抛物线y1上一动点,过点Py轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与AMG全等,求直线PR的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在平面直角坐标系中菱形ABOC的顶点O在坐标原点BOx轴的负半轴上,∠BOC=60°,顶点C的坐标为m),反比例函数的图像与菱形对角线AO交于D连接BDBDx轴时k的值是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平行四边形ABCD和矩形ABEF中,ACDF相交于点G.

(1) 试说明DFCE

(2) ACBFDF,求∠ACE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向,从C岛看AB两岛的视角ACB是多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P在线段AC上以5cm/s的速度从点A运动到点C,过点P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△A′DP,设点P的运动时间为x(s).

(1)当点A′落在边BC上时,求x的值;

(2)在动点P从点A运动到点C过程中,当x为何值时,△A′BC是以A′B为腰的等腰三角形;

(3)如图(2),另有一动点Q与点P同时出发,在线段BC上以5cm/s的速度从点B运动到点C,过点Q作QE⊥AB于点E,将△BQE绕QE的中点旋转180°得到△B′EQ,连结A′B′,当直线A′B′与△ABC的一边垂直时,求线段A′B′的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果批发商场销售一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下.若每千克涨价1元,日销售量将减少20千克.

(1)现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?

(2)每千克水果涨价多少元时,商场每天获得的利润最大?获得的最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导光盘行动,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图。

(1)这次被调查的同学共有 名;

(2)把条形统计图补充完整;

(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐。据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?

查看答案和解析>>

同步练习册答案