精英家教网 > 初中数学 > 题目详情
13.$\left\{\begin{array}{l}{\frac{m}{3}-\frac{n}{4}=-1}\\{\frac{m}{2}+\frac{n}{3}=7}\end{array}\right.$.

分析 方程组整理后,利用加减消元法求出解即可.

解答 解:方程组整理得:$\left\{\begin{array}{l}{4m-3n=-12①}\\{3m+2n=42②}\end{array}\right.$,
①×2+②×3得:17m=102,
解得:m=6,
把m=6代入②得:n=12,
则方程组的解为$\left\{\begin{array}{l}{m=6}\\{n=12}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.如图,边长为a的正六边形中,连接一些顶点,中间围成一个新的小正六边形(阴影部分),则$\frac{{l}_{外部正六边形}}{{l}_{阴影}}$(l为周长)等于(  )
A.3B.$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:(π-3.14)0+($\frac{3}{2}$)-2-$\sqrt{12}$-2sin60°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.(1)15°15'12''=15.25$\stackrel{•}{3}$°;
(2)30.26°=30°15'36''.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(米)与飞行时间t(秒)的关系如下表,且h与t的函数关系是我们学过的一次函数、二次函数、反比例函数中的一种
时间t(秒)0134
高度h(米)015150
(1)请你从上述函数中选择一种合适的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由
(2)什么时候小球最高?最大高度是多少?
(3)小球运动的时间t在什么范围内,小球在运动过程中的高度不低于18.75米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.(1)计算:(-$\frac{1}{3}$)-1-($\sqrt{3}$-2)0+|1-$\sqrt{2}$|+4cos45°.
(2)先化简,再求值:$\frac{{x}^{2}-2x+1}{{x}^{2}-1}$÷(1-$\frac{3}{x+1}$),其中x=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.计算题
(1)(m42+m5•m3+(-m)4•m4           
(2)x(2x-5)+3x(x+2)-5x(x-1)
(3)(-$\frac{1}{4}$)-1+(-2)2×50-($\frac{1}{2}$)-2            
(4)(3m+n)(m-2n)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.观察下列运算并填空:
1×2×3×4+1=25=52
2×3×4×5+1=121=112
3×4×5×6+1=361=192

9×10×11×12+1=11881=1092
根据以上结果,猜想:(n+1)(n+2)(n+3)(n+4)+1=(n2+5n+5)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.画图并填空:
如图,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点C的对应点C′.
(1)画出平移后的△A′B′C′,(利用网格点和三角板画图)
(2)画出AB边上的中线CD;
(3)画出AC边上的高线BE;
(4)在平移过程中高BE扫过的面积为16.(网格中,每一小格单位长度为1).

查看答案和解析>>

同步练习册答案