【题目】已知直线与双曲线交于,两点,过作轴于点,过作轴于点,连接.
(Ⅰ)求,两点的坐标;
(Ⅱ)试探究直线与的位置关系并说明理由.
(Ⅲ)已知点,且,在抛物线上,若当(其中)时,函数的最小值为,最大值为,求的值.
【答案】(Ⅰ)若,则,,若,则,;(Ⅱ),理由见解析;(Ⅲ)的值为
【解析】
(Ⅰ)把直线y=x+t与双曲线的解析式联立成方程组,解方程组即可求出交点坐标,即C、D两点的坐标;
(Ⅱ)位置关系是:平行,求出直线AB的解析式,与直线CD的解析式y=x+t比较,k相等说明两直线平行;
(Ⅲ)先求出C点坐标,再利用待定系数法求出抛物线的解析式,最后通过分类讨论:①当时,②当,③当,分别根据函数的最小值为,最大值为,结合二次函数的性质列出方程,得出m,n的值.
解:(Ⅰ)联立,解得:或,
设,,
若,则,,
若,则,;
(Ⅱ),
理由:不妨设,
由(1)知, ,
∴,,
设直线的解析式为,
则将,两点坐标代入有:,,
∴,
∴直线的解析式为:,
∴直线与的位置关系是;
(Ⅲ)将代入双曲线得,
将代入直线,得,
∵,
∴由(Ⅰ)知,
∴,
∵,在抛物线上,
∴,解得,
即,
由,可知,,
①当时,由函数的最小值为,最大值为,可知,
∴,即为一元二次方程的两解,即,
∵,
∴,.
又∵,
∴此情况不合题意;
②当,即时,
由函数的最小值为,最大值为,可知,
解得:,
此时,即,符合题意,
∴;
③当,即时,
由函数的最小值为,最大值为,可知,
解得:,
∵,
∴此情况不合题意,
综上所述,满足题意的的值为.
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与x轴相交于A(3,0)、B(1,0)两点,与y轴相交于点C(0,3),点C.D是二次函数图象上的一对对称点,一次函数的图象过点B,D.
(1)D点坐标;
(2)求二次函数的解析式;
(3)根据图象直接写出使一次函数值小于二次函数值的x的取值范围;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,△ABC中,∠ACB=90°,AC=4,BC=6,点E,F分别在边AB,BC上,将△ABC沿直线EF折叠,点B恰好落在AC边上的点D处,且CD=3.
(1)求CF的长;
(2)点G是射线BA上的一个动点,连接DG,GC,BD,△DGC的面积与△DGB的面积相等,
①当点G在线段BA上时,求BG的长;
②当点G在线段BA的延长线上时,BG=______;
(3)将直线EF平移,平移后的直线与直线BC,直线AC分别交于点M和点N,以线段MN为一边作正方形MNPQ,点P与点B在直线MN两侧,连接PD,当PD∥BC时,请直接写出tan∠QBC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某同学在利用描点法画二次函数y=ax2+bx+c(a=0)的图象时,先取自变量x的一些值,计算出相应的函数值y,如下表所示:
x | … | 0 | 1 | 2 | 3 | 4 | … |
y | … | ﹣3 | 0 | ﹣1 | 0 | 3 | … |
接着,他在描点时发现,表格中有一组数据计算错误,他计算错误的一组数据是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知梯形ABCD中,AB∥CD,∠DAB=90°,AD=4,AB=2CD=6,E是边BC上一点,过点D、E分别作BC、CD的平行线交于点F,联结AF并延长,与射线DC交于点G.
(1)当点G与点C重合时,求CE:BE的值;
(2)当点G在边CD上时,设CE=m,求△DFG的面积;(用含m的代数式表示)
(3)当△AFD∽△ADG时,求∠DAG的余弦值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】春晓中学为开展“校园科技节”活动,计划购买A型、B型两种型号的航模.若购买8个A型航模和5个B型航模需用2200元;若购买4个A型航模和6个B型航模需用1520元.求A,B两种型号航模的单价分别是多少元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2﹣2和x轴交于A,B(点A在点B右边)两点,和y轴交于点C,P为抛物线上的动点.
(1)求出A,C的坐标;
(2)求动点P到原点O的距离的最小值,并求此时点P的坐标;
(3)当点P在x轴下方的抛物线上运动时,过P的直线交x轴于E,若△POE和△POC全等,求此时点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com