【题目】图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字2,3,4,5.图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子在桌面掷出后,看骰子落在桌面上(即底面)的数字是几,就从图中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法继续……
(1)随机掷一次骰子,则棋子跳动到点C处的概率是 .
(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.
科目:初中数学 来源: 题型:
【题目】如图, AB 是⊙O 的直径,点 C 和点 D 是⊙O 上两点,连接 AC 、CD 、 BD ,若 CA= CD,∠ ACD = 80° ,则∠ CAB =______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19 m),另外三边利用学校现有总长38 m的铁栏围成.
(1)若围成的面积为180 m2,试求出自行车车棚的长和宽;
(2)能围成面积为200 m2的自行车车棚吗?如果能,请你给出设计方,如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一个二次函数图象上部分点的横坐标与纵坐标的对应值如表所示:
… | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … | |
… | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | … |
(1)求这个二次函数的表达式;
(2)在给定的平面直角坐标系中画出这个二次函数的图象;
(3)当时,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图抛物线y=ax2+bx+与y轴交于点A,与x轴交于点B、点C.连接AB,以AB为边向右作平行四边形ABDE,点E落在抛物线上,点D落在x轴上,若抛物线的对称轴恰好经过点D,且∠ABD=60°,则这条抛物线的解析式为( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(题文)已知直线与抛物线相交于抛物线的顶点和另一点,点在第四象限.
若点,点的横坐标为,求点的坐标;
过点作轴的平行线与抛物线的对称轴交于点,直线与轴交于点,若,,求的面积的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形ABCD中,E、F分别是AB、AD边上的点,DE与CF交于点G.
问题发现
如图,若四边形ABCD是矩形,且于G,,填空:______;当矩形ABCD是正方形时,______;
拓展探究
如图,若四边形ABCD是平行四边形,试探究:当与满足什么关系时,成立?并证明你的结论;
解决问题
如图,若于G,请直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+4(a≠0)与y轴交于点A.
(1)求点A的坐标和抛物线的对称轴;
(2)过点B(0,3)作y轴的垂线l,若抛物线y=ax2﹣4ax+4(a≠0)与直线l有两个交点,设其中靠近y轴的交点的横坐标为m,且|m|<1,结合函数的图象,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为,种草所需费用(元)与的函数关系式为,其大致图象如图所示.栽花所需费用(元)与的函数关系式为.
(1)求出,的值;
(2)若种花面积不小于时的绿化总费用为(元),写出与的函数关系式,并求出绿化总费用的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com