精英家教网 > 初中数学 > 题目详情

小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.

(1)如图①,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为           .

(2)不改变①中灯泡的高度,将两个边长为30cm的正方形框架按图②摆放,请计算此时横向影子ABDC的长度和为多少?

(3)有n个边长为a的正方形按图③摆放,测得横向影子ABDC的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)

 

【答案】

(1)180cm (2)12 cm   (3)

【解析】

试题分析:(1)由题意得A′B=D′C,BM=CM=15;正方形框架ABCD,AB⊥BC,DC⊥BC,AB=CD;所以(SAS),;正方形框架的横向影子A′B,D′C的长度和为6cm,,在直角三角形;而在直角三角形,所以,解得h=180cm

(2)不改变①中灯泡的高度,将两个边长为30cm的正方形框架按图②摆放,h=180cm;BM=CM=30cm,AB=CD=30cm;由(1)的证明可得(SAS),,在直角三角形;而在直角三角形,所以,解得x=6,所以横向影子ABDC的长度和=2x=12cm

(3)记灯泡为点P

ADA′D′,∴∠PAD=∠PA′D′,∠PDA=∠P D′A′

∴△PAD∽△PA′D′

根据相似三角形对应高的比等于相似比的性质,可得

设灯泡离地面距离为由题意,得 PM=PN=AD= A′D′=

所以x=

考点:全等三角形,三角函数,正方形

点评:本题考查全等三角形,三角函数,正方形,掌握三角形全等的判定方法,熟悉三角函数的定义,掌握正方形的性质是解本题的关键,本题虽是最后一题,但难度不算大

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.
精英家教网
(1)如图1,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为
 

(2)不改变图1中灯泡的高度,将两个边长为30cm的正方形框架按图2摆放,请计算此时横向影子A′B,D′C的长度和为多少?
(3)有n个边长为a的正方形按图3摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)

查看答案和解析>>

科目:初中数学 来源:2012届江苏省淮安市清浦区清浦中学中考模拟试卷3数学试卷(带解析) 题型:解答题

小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.
(1)如图①,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为           .
(2)不改变①中灯泡的高度,将两个边长为30cm的正方形框架按图②摆放,请计算此时横向影子A′B,D′C的长度和为多少?
(3)有n个边长为a的正方形按图③摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)

查看答案和解析>>

科目:初中数学 来源:2013届江苏省南京学大教育专修学校九年级4月月考数学试卷(带解析) 题型:解答题

小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.
(1)如图①,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为           .
(2)不改变①中灯泡的高度,将两个边长为30cm的正方形框架按图②摆放,请计算此时横向影子ABDC的长度和为多少?
(3)有n个边长为a的正方形按图③摆放,测得横向影子ABDC的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省淮安市中考模拟试卷3数学试卷(解析版) 题型:解答题

小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.

(1)如图①,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为           .

(2)不改变①中灯泡的高度,将两个边长为30cm的正方形框架按图②摆放,请计算此时横向影子A′B,D′C的长度和为多少?

(3)有n个边长为a的正方形按图③摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)

 

查看答案和解析>>

同步练习册答案