精英家教网 > 初中数学 > 题目详情

如下图,正方形ABCD的顶点A,B的坐标分别为(0,10),(8,4),顶点C,D在第一象限.点P从点A出发,沿正方形按逆时针方向匀速运动,同时,点Q从点E(4,0)出发,沿x轴正方向以相同速度运动.当点P到达点C时,P,Q两点同时停止运动,设运动的时间为t秒.

(1)求正方形ABCD的边长.

(2)当点P在AB边上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分(如图所示),求P,Q两点的运动速度.

(3)求(2)中面积S(平方单位)与时间t(秒)的函数关系式及面积S取最大值时点P的坐标.

(4)若点P,Q保持(2)中的速度不变,则点P沿着AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小.当点P沿着这两边运动时,使∠OPQ=90°的点P有________个.

(抛物线y=ax2+bx+c(a≠0)的顶点坐标是.)

练习册系列答案
相关习题

科目:初中数学 来源:同步题 题型:解答题

如下图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是BC的中点,E,F。
(1)试说明:DE=DF;
(2)只添加一个条件,使四边形EDFA是正方形,请你至少写出两种不同的添加方法。(不另外添加辅助线,无需证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如下图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.

(1)求证:四边形ADCE为矩形;

(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如下图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,

(1)求证:四边形ADCE为矩形;

(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如下图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,

(1)求证:四边形ADCE为矩形;

(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如下图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数为(    )

A.0                     B.1                     C.2                     D.3

查看答案和解析>>

同步练习册答案