精英家教网 > 初中数学 > 题目详情
9.计算:x(x-2)-(x+2)(x-2),其中x=$\frac{1}{2}$.

分析 先根据多项式乘单项式法则和平方差公式计算乘法,再去括号,最后合并同类项即可化简原式,将x的值代入即可求解.

解答 解:原式=x2-2x-(x2-4)
=x2-2x-x2+4
=-2x+4,
当x=$\frac{1}{2}$时,原式=-1+4=3.

点评 此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.我们知道对于x轴上的任意两点A(x1,0),B(x2,0),有AB=|x1-x2|,而对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1-x2|+|y1-y2|称为Pl,P2两点间的直角距离,记作d(P1,P2),即d(P1,P2)=|x1-x2|+|y1-y2|.
(1)已知O为坐标原点,若点P坐标为(1,3),则d(O,P)=4;
(2)已知O为坐标原点,动点P(x,y)满足d(O,P)=2,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;
(3)试求点M(2,3)到直线y=x+2的最小直角距离.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,在△ABC中,AB=4,将△ABC沿射线AB方向平移得到△A′B′C′,连接CC′,若A′C′恰好经过BC边的中点D,则AB′的长度为6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.

(1)请画出平移后的△DEF,并求△DEF的面积=7.
(2)若连接AD、CF,则这两条线段之间的关系是平行且相等;
(3)请在AB上找一点P,使得线段CP平分△ABC的面积,在图上作出线段CP.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在?ABCD中,点E、F在AC上,且AF=CE,求证:∠ABE=∠CDF.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,△COD是△AOB绕点O顺时针方向旋转30°后所得的图形,点C恰好在AB上,∠AOD=90°.
(1)∠B的度数是45°;
(2)若AO=$2\sqrt{3}$,CD与OB交于点E,则BE=3-$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.小红用一张长方形纸片ABCD进行折纸,已知该纸片宽8,长BC为10,当小红折叠时,顶点D落在BC边上的点F处(折痕为AE),想一想,此时FC有多长?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.在矩形ABCD中,点E在BC上,以AE为边作?AEFG,使点D在AE的对边FG上.

(1)填空:如图1,连接DE,则△ADE的面积=$\frac{1}{2}$四边形AEFG的面积;
并直接写出?AEFG的面积S1与矩形ABCD的面积S2的数量关系;
(2)如图2,EF与CD交于点P,连接PA.
①若∠F=90°,证明:A、E、P、D四点在同一个圆上;并直接说明点D、F、C、E是否在同一个圆上;
(3)如图3,在①的条件下,若AB<BC,AG=AE,且D是FG的中点,EF交CD于点P,试判断以FG为直径的圆与直线PA的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.若关于x的不等式组$\left\{\begin{array}{l}{x-a<0}\\{5-2x≤1}\end{array}\right.$的整数解共有3个,则a的取值范围是4<a≤5.

查看答案和解析>>

同步练习册答案