【题目】如图在矩形ABCD中,AB=,AD=3,点P是AD边上的一个动点,连接BP,作点A关于直线BP的对称点A1,连接A1C,设A1C的中点为Q,当点P从点A出发,沿边AD运动到点D时停止运动,点Q的运动路径长为( )
A.πB.πC.πD.π
【答案】C
【解析】
连接BA1,取BC的中点O,连接OQ、BD,求出∠ABD=60°,证出OQ是△CBA1的中位线,得出OQ=BA1=AB=,得出点Q的运动轨迹是以O为圆心,OQ为半径的圆弧,圆心角为120°,由弧长公式即可得出答案.
解:连接BA1,取BC的中点O,连接OQ、BD,如图所示:
∵点A关于直线BP的对称点A1,
∴AB=BA1,
∵四边形ABCD是矩形,
∴∠BAD=90°,
∴tan∠ABD===,
∴∠ABD=60°,
∵A1C的中点为Q,BC的中点为O,
∴OQ是△CBA1的中位线,
∴OQ=BA1=AB=,
∴点Q的运动轨迹是以O为圆心,OQ为半径的圆弧,圆心角为120°,
∴点Q的运动路径长为:=π,
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,已知在正方形ABCD中,连结AC,在AC上截取AE=AD,作△ADE的外接圆交AB于点F,连结DF交AC于点M,连结EF,下列选项不正确的是( )
A.
B.AM=EC
C.∠EFB=∠AFD
D.S四边形BCMF=S四边形ADEF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
销售单价(元) | x |
销售量y(件) |
|
销售玩具获得利润w(元) |
|
(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.
(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式.
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某农场要建一个饲养场(长方形ABCD),饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长57米,设饲养场(长方形ABCD)的宽为a米.
(1)饲养场的长为多少米(用含a的代数式表示).
(2)若饲养场的面积为288m2,求a的值.
(3)当a为何值时,饲养场的面积最大,此时饲养场达到的最大面积为多少平方米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线(,b是常数,且≠0)与x轴交于A,B两点,与y轴交于点C.并且A,B两点的坐标分别是A(-1,0),B(3,0)
(1)①求抛物线的解析式;②顶点D的坐标为_______;③直线BD的解析式为______;
(2)若P为线段BD上的一个动点,其横坐标为m,过点P作PQ⊥x轴于点Q,求当m为何值时,四边形PQOC的面积最大?
(3)若点M是抛物线在第一象限上的一个动点,过点M作MN∥AC交轴于点N.当点M的坐标为_______时,四边形MNAC是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一块等腰三角形钢板的底边长为,腰长为.
(1)求能从这块钢板上截得的最大圆的半径;
(2)用一个圆完整覆盖这块钢板,这个圆的最小半径是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以O为圆心,OB为半径作圆,过C作CD∥AB交⊙O于点D,连接BD.
(1)猜想AC与⊙O的位置关系,并证明你的猜想;
(2)已知AC=6,求扇形OBC围成的圆锥的底面圆半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com