精英家教网 > 初中数学 > 题目详情
18.已知:在△ABC中,∠B=∠C,在△ADE中∠ADE=∠AED,∠BAD=40°,求:∠EDC的度数.

分析 首先两次运用三角形外角的性质得∠EDC=(∠B+∠BAD-∠EDC)-∠B=40°-∠EDC,然后移项可得结果.

解答 解:∵∠EDC=∠AED-∠C,∠ADE=∠AED
∴∠EDC=∠ADE-∠B
∵∠ADE=∠B+∠BAD-∠EDC
∴∠EDC=(∠B+∠BAD-∠EDC)-∠B=40°-∠EDC
即2∠EDC=40°
∴∠EDC=20°.
故∠EDC的度数为20°.

点评 本题考查了等腰三角形的性质及三角形内角和定理,三角形外角的性质;解决本题的关键是利用外角和相等的角得到所求角和已知角之间的关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.多项式3x2y-7x4y2-$\frac{1}{3}$xy3+27是六次四项式,最高次项是-7x4y2,按y的升幂排列为27+3x2y-$\frac{1}{3}$xy3-7x4y2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列运算正确的是(  )
A.-40=1B.(-3)-1=$\frac{1}{3}$C.(-2m-n2=4m-nD.(a+b)-1=a-1+b-1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.将抛物线y=2x2向左平移1个单位,再向上平移3个单位得到的抛物线表达式是(  )
A.y=2(x-1)2-3B.y=2(x+1)2+3C.y=2(x-1)2+3D.y=2(x+1)2-3 5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知抛物线经过(1,4)、(2,3)、(0,3)三点,求这条抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.-$\frac{2}{3}$的倒数是(  )
A.$\frac{3}{2}$B.$\frac{2}{3}$C.-$\frac{3}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.公司9月份利润为100万元,要使11月份的利润达到144万元,则平均每月增长的百分率为(  )
A.10%B.20%C.22%D.25%

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在小正方形的边长均为1的方格纸中,有线段AB,点A、B均在小正方形的顶点上.
(1)在图1中画一个以线段AB为一边的平行四边形ABCD,点C、D均在小正方形的顶点上,且平行四边形ABCD的面积为10;
(2)在图2中画一个钝角三角形ABE,点E在小正方形的顶点上,且三角形ABE的面积为4,tan∠AEB=$\frac{1}{3}$.请直接写出BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.(1)解分式方程:$\frac{1}{2-x}-2=\frac{1-x}{x-2}$.
(2)先分解因式,再求值:($\frac{x+y}{3}$)2-($\frac{x-y}{3}$)2,其中x=-$\frac{3}{4}$,y=3.
(3)先化简,再求值:$\frac{{x}^{2}-4}{{x}^{2}-4x+4}÷\frac{x+2}{x+1}-\frac{x}{x-2}$,其中x=2$-\sqrt{2}$.

查看答案和解析>>

同步练习册答案