精英家教网 > 初中数学 > 题目详情

【题目】对于二次函数yx23x+2和一次函数y=﹣2x+4,把ytx23x+2+1t)(﹣2x+4)称为这两个函数的再生二次函数,其中t是不为零的实数,其图象记作抛物线L.现有点A20)和抛物线L上的点B(﹣1n),请完成下列任务:

(尝试)

1)当t2时,抛物线ytx23x+2+1t)(﹣2x+4)的顶点坐标为   

2)判断点A是否在抛物线L上;

3)求n的值;

(发现)

通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线L总过定点,坐标为   

(应用)

二次函数y=﹣3x2+5x+2是二次函数yx23x+2和一次函数y=﹣2x+4的一个再生二次函数吗?如果是,求出t的值;如果不是,说明理由.

【答案】[尝试]1)(1,﹣2);(2)点A在抛物线L上;(3n=6[发现]20,(﹣16);[应用]不是,理由见解析.

【解析】

[尝试]
1)将t的值代入再生二次函数中,通过配方可得到顶点的坐标;
2)将点A的坐标代入抛物线L直接进行验证即可;
3)已知点B在抛物线L上,将该点坐标代入抛物线L的解析式中直接求解,即可得到n的值.
[发现]
将抛物线L展开,然后将含t值的式子整合到一起,令该式子为0(此时无论t取何值都不会对函数值产生影响),即可求出这个定点的坐标.
[应用]
[发现]中得到的两个定点坐标代入二次函数y=-3x2+5x+2中进行验证即可.

解:[尝试]

1t2代入抛物线L中,得:

ytx23x+2+1t)(﹣2x+4)=2x24x2x122

此时抛物线的顶点坐标为:(1,﹣2).

2x2代入ytx23x+2+1t)(﹣2x+4),得 y0

A20)在抛物线L上.

3)将x=﹣1代入抛物线L的解析式中,得:

ntx23x+2+1t)(﹣2x+4)=6

[发现]

将抛物线L的解析式展开,得:

ytx23x+2+1t)(﹣2x+4)=tx2)(x+1)﹣2x+4

x=2时,y=0,当x=-1时,y=6,与t无关,

抛物线L必过定点(20)、(﹣16).

[应用]

x2代入y=﹣3x2+5x+2y0,即点A在抛物线上.

x=﹣1代入y=﹣3x2+5x+2,计算得:y=﹣6≠6

即可得抛物线y=﹣3x2+5x+2不经过点B

∴二次函数y=﹣3x2+5x+2不是二次函数yx23x+2和一次函数y=﹣2x+4的一个再生二次函数

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】问题:在1nn ≥2)这n个自然数中,每次取两个数(不分顺序),使得所取两数之和大于n,共有多少种取法?

探究:不妨设有m种取法,为了探究mn的关系,我们先从简单情形入手,再逐次递进,最后猜想得出结论.

探究一:在122个自然数中,每次取两个不同的数(不分顺序),使得所取的两个数之和大于2,有多少种取法?

根据题意,有下列取法:1+2,共1种取法.

所以,当n=2时,m=1.

探究二:在133个自然数中,每次取两个不同的数(不分顺序),使得所取的两个数之和大于3,有多少种取法?

根据题意,有下列取法:1+32+3,共2种取法.

所以,当n=3时,m=2.

探究三:在144个自然数中,每次取两个不同的数(不分顺序),使得所取的两个数之和大于4,有多少种取法?

根据题意,有下列取法:1+42+43+42+3,共有3+1=4种取法.

所以,当n=4时,m=3+1=4.

探究四:在155个自然数中,每次取两个不同的数(不分顺序),使得所取的两个数之和大于5,有多少种取法?

根据题意,有下列取法:1+5 2+5 3+5 4+52+43+4,共有4+2=6种不同的取法.

所以,当n=5时,m=4+2=6.

探究五:在166个自然数中,每次取两个不同的数(不分顺序),使得所取的两个数之和大于6,有多少种不同的取法?(仿照上述探究方法,写出解答过程)

探究六:在177个自然数中,每次取两个不同的数,使得所取的两个数之和大于7,共有 种取法?(直接写出结果)

不妨继续探究n=8,9···时,mn的关系.

结论:在1nn个自然数中,每次取两个数,使得所取的两个数字之和大于n,当n为偶数时,共有___种取法;当n为奇数时,共有___种取法;(只填最简算式)

应用:(1)各边长都是自然数,最大边长为11的不等边三角形共有

2)各边长都是自然数,最大边长为12的三角形共有

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点Cy轴正半轴上的一个动点,抛物线yax25ax+4aa是常数,且a0)过点C,与x轴交于点AB,点A在点B的左边.连接AC,以AC为边作等边三角形ACD,点D与点O在直线AC两侧.

1)求点AB的坐标;

2)当CDx轴时,求抛物线的函数表达式;

3)连接BD,当BD最短时,请直接写出抛物线的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为 2000 元,1700 元的AB两种型号的净水器,下表是近两周的销售情况:

1)求AB两种型号的净水器的销售单价;

2)若电器公司准备用不多于 54000 元的金额采购这两种型号的净水器共 30 台,求 A种型号的净水器最多能采购多少台?

3)在(2)的条件下,公司销售完这 30 台净水器能否实现利润超过12800 元的目标?若能,请给出相应的采购方案;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PAPB是⊙O的切线,AB为切点,∠OAB30°.

1)求∠APB的度数;

2)当OA3时,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,以AB为直径的⊙OBC于点D,过点DDEAC于点E,延长CA交⊙O于点F

1)求证:DE是⊙O切线;

2)若AB10cmDE+EA6cm,求AF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,ABCD的顶点BCx轴上,AD两点分别在反比例函数y=﹣x0)与yx0)的图象上,若ABCD的面积为4,则k的值为:_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.

下面有三个推断:

①当投掷次数是500时,计算机记录钉尖向上的次数是308,所以钉尖向上的概率是0.616;

②随着实验次数的增加,钉尖向上的频率总在0.618附近摆动,显示出一定的稳定性,可以估计钉尖向上的概率是0.618;

③若再次用计算机模拟实验,则当投掷次数为1000时,钉尖向上的概率一定是0.620.

其中合理的是(

A. B. C. ①② D. ①③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场购进一批单价为16元的日用品.若按每件23元的价格销售,每月能卖出270件;若按每件28元的价格销售,每月能卖出120件;若规定售价不得低于23元,假定每月销售件数y()与价格x(元/件)之间满足一次函数.

1)试求yx之间的函数关系式.

2)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的毛利润w最大?每月的最大毛利润为多少?

3)若要使某月的毛利润为1800元,售价应定为多少元?

查看答案和解析>>

同步练习册答案