20£®Èçͼ£¬ÒÑÖªÅ×ÎïÏßy=m£¨x+1£©£¨x-2£©£¨mΪ³£Êý£¬ÇÒm£¾0£©ÓëxÖá´Ó×óÖÁÓÒÒÀ´Î½»ÓÚA¡¢BÁ½µã£¬ÓëyÖá½»ÓÚµãC£¬ÇÒOA=OC£¬¾­¹ýµãBµÄÖ±ÏßÓëÅ×ÎïÏßµÄÁíÒ»½»µãDÔÚµÚ¶þÏóÏÞ£®

£¨1£©ÇóÅ×ÎïÏߵĺ¯Êý±í´ïʽ£®
£¨2£©Èô¡ÏDBA=30¡ã£¬ÉèFΪÏ߶ÎBDÉÏÒ»µã£¨²»º¬¶Ëµã£©£¬Á¬½ÓAF£¬Ò»¶¯µãM´ÓµãA³ö·¢£¬ÑØÏ߶ÎAFÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÔ˶¯µ½F£¬ÔÙÑØÏ߶ÎFDÒÔÿÃë2¸öµ¥Î»µÄËÙ¶ÈÔ˶¯µ½DºóÍ£Ö¹£¬µ±µãFµÄ×ø±êÊǶàÉÙʱ£¬µãMÔÚÕû¸öÔ˶¯¹ý³ÌÖÐÓÃʱ×îÉÙ£¿

·ÖÎö £¨1£©Ê×ÏÈÇó³öµãA¡¢B×ø±ê£¬È»ºó¸ù¾ÝOA=OC£¬ÇóµÃµãD×ø±ê£¬´úÈëÅ×ÎïÏßy=m£¨x+1£©£¨x-2£©£¨mΪ³£Êý£¬ÇÒm£¾0£©£¬ÇóµÃÅ×ÎïÏß½âÎöʽ£»
£¨2£©ÓÉÌâÒ⣬¶¯µãMÔ˶¯µÄ·¾¶ÎªÕÛÏßAF+DF£¬Ô˶¯Ê±¼ä£ºt=AF+$\frac{1}{2}$DF£®Èç´ðͼ3£¬×÷¸¨ÖúÏߣ¬½«AF+$\frac{1}{2}$DFת»¯ÎªAF+FG£»ÔÙÓÉ´¹Ï߶Î×î¶Ì£¬µÃµ½´¹Ï߶ÎAHÓëÖ±ÏßBDµÄ½»µã£¬¼´ÎªËùÇóµÄFµã£®

½â´ð ½â£º
£¨1£©Å×ÎïÏßy=m£¨x+1£©£¨x-2£©£¨mΪ³£Êý£¬ÇÒm£¾0£©ÓëxÖá´Ó×óÖÁÓÒÒÀ´Î½»ÓÚA¡¢BÁ½µã£¬
Áîy=0£¬½âµÃx=-1»òx=2£¬
ÔòA£¨-1£¬0£©£¬B£¨2£¬0£©£¬
¡ßOA=OC£¬
¡àC£¨0£¬-1£©£¬
¡ßµãC£¨0£¬-1£©ÔÚÅ×ÎïÏßy=m£¨x+1£©£¨x-2£©ÉÏ£¬
¡àm¡Á£¨0+1£©¡Á£¨0-2£©=-1£¬
½âµÃm=$\frac{1}{2}$£®
¡àÅ×ÎïÏߵĺ¯Êý±í´ïʽΪ£ºy=$\frac{1}{2}$£¨x+1£©£¨x-2£©£»
£¨2£©¡ß¡ÏDBA=30¡ã£¬
¡àÉèÖ±ÏßBDµÄ½âÎöʽΪy=-$\frac{\sqrt{3}}{3}$x+b£¬
¡ßB£¨2£¬0£©£¬
¡à0=-$\frac{\sqrt{3}}{3}$¡Á2+b£¬½âµÃb=$\frac{2\sqrt{3}}{3}$£¬
¹ÊÖ±ÏßBDµÄ½âÎöʽΪy=-$\frac{\sqrt{3}}{3}$x+$\frac{2\sqrt{3}}{3}$£¬
ÁªÁ¢Á½½âÎöʽ¿ÉµÃ$\left\{\begin{array}{l}{y=-\frac{\sqrt{3}}{3}x+\frac{2\sqrt{3}}{3}}\\{y=\frac{1}{2}£¨x+1£©£¨x-2£©}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$£¬$\left\{\begin{array}{l}{x=-\frac{2\sqrt{3}+3}{3}}\\{y=\frac{2\sqrt{3}+3}{3}}\end{array}\right.$£®
ÔòD£¨-$\frac{2\sqrt{3}+3}{3}$£¬$\frac{2\sqrt{3}+3}{3}$£©£¬
Èçͼ£¬¹ýµãD×÷DN¡ÍxÖáÓÚµãN£¬¹ýµãD×÷DK¡ÎxÖᣬ
Ôò¡ÏKDF=¡ÏDBA=30¡ã£®
¹ýµãF×÷FG¡ÍDKÓÚµãG£¬ÔòFG=$\frac{1}{2}$DF£®

ÓÉÌâÒ⣬¶¯µãMÔ˶¯µÄ·¾¶ÎªÕÛÏßAF+DF£¬Ô˶¯Ê±¼ä£ºt=AF+$\frac{1}{2}$DF£¬
¡àt=AF+FG£¬¼´Ô˶¯µÄʱ¼äÖµµÈÓÚÕÛÏßAF+FGµÄ³¤¶ÈÖµ£®
ÓÉ´¹Ï߶Î×î¶Ì¿ÉÖª£¬ÕÛÏßAF+FGµÄ³¤¶ÈµÄ×îСֵΪDKÓëxÖáÖ®¼äµÄ´¹Ï߶Σ®
¹ýµãA×÷AH¡ÍDKÓÚµãH£¬Ôòt×îС=AH£¬AHÓëÖ±ÏßBDµÄ½»µã£¬¼´ÎªËùÇóµÄFµã£®
¡ßAµãºá×ø±êΪ-1£¬Ö±ÏßBD½âÎöʽΪ£ºy=-$\frac{\sqrt{3}}{3}$x+$\frac{2\sqrt{3}}{3}$£¬
¡ày=-$\frac{\sqrt{3}}{3}$¡Á£¨-1£©+$\frac{2\sqrt{3}}{3}$=$\sqrt{3}$£¬
¡àF£¨-1£¬$\sqrt{3}$£©£®
×ÛÉÏËùÊö£¬µ±µãF×ø±êΪ£¨-1£¬$\sqrt{3}$£©Ê±£¬µãMÔÚÕû¸öÔ˶¯¹ý³ÌÖÐÓÃʱ×îÉÙ£®

µãÆÀ ±¾ÌâΪ¶þ´Îº¯ÊýµÄ×ÛºÏÓ¦Óã¬Éæ¼°´ý¶¨ÏµÊý·¨¡¢º¯ÊýͼÏóµÄ½»µã¡¢Ö±½ÇÈý½ÇÐεÄÐÔÖÊ¡¢´¹Ï߶Î×î¶ÌµÈ֪ʶ£®ÔÚ£¨1£©ÖÐÇóµÃCµã×ø±êÊǽâÌâµÄ¹Ø¼ü£¬ÔÚ£¨2£©È·¶¨³öÂú×ãÌõ¼þµÄFµãµÄλÖÃÊǽâÌâµÄ¹Ø¼ü£®±¾Ì⿼²é֪ʶµã½Ï¶à£¬×ÛºÏÐÔ½ÏÇ¿£¬ÌرðÊǵڣ¨2£©ÎÊÄѶȽϴó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èô¾ØÐεĶԽÇÏß³¤Îª2cm£¬Á½Ìõ¶Ô½ÇÏßµÄÒ»¸ö½»½ÇΪ60¡ã£¬Ôò¸Ã¾ØÐεĽϳ¤µÄ±ß³¤Îª$\sqrt{3}$cm£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Èô½«Ö±³ßµÄ0cm¿Ì¶ÈÏßÓë°ë¾¶Îª5cmµÄÁ¿½ÇÆ÷µÄ0¡ãÏ߶ÔÆ룬²¢ÈÃÁ¿½ÇÆ÷ÑØÖ±³ßµÄ±ßÔµÎÞ»¬¶¯µØ¹ö¶¯£¬ÔòÖ±³ßÉϵÄ10cm¿Ì¶ÈÏ߶ÔÓ¦Á¿½ÇÆ÷ÉϵĶÈÊýԼΪ115¡ã£®£¨±£Áô¦Ð£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Ëæ×ųµÁ¾µÄÔö¼Ó£¬½»Í¨Î¥¹æµÄÏÖÏóÔ½À´Ô½ÑÏÖØ£¬½»¾¯¶ÔÈËÃñ·ijÀ×´ï²âËÙÇø¼ì²âµ½µÄÒ»×éÆû³µµÄʱËÙÊý¾Ý½øÐÐÕûÀí£¨ËÙ¶ÈÔÚ30-40º¬ÆðµãÖµ30£¬²»º¬ÖÕµãÖµ40£©£¬µÃµ½ÆäƵÊý¼°ÆµÂÊÈç±í£º
Êý¾Ý¶ÎƵÊýƵÂÊ
30-40100.05
40-5036     c
50-60a0.39
60-70b¡¡   d
70-80200.10
×ܼÆ2001
£¨1£©±íÖÐa¡¢b¡¢c¡¢d·Ö±ðΪ£ºa=78£» b=56£» c=0.18£» d=0.28£®
£¨2£©²¹È«ÆµÊý·Ö²¼Ö±·½Í¼£»
£¨3£©Èç¹ûijÌì¸Ã·¶ÎÔ¼ÓÐ1500Á¾Í¨¹ý£¬Æû³µÊ±ËÙ²»µÍÓÚ60ǧÃ×¼´ÎªÎ¥Õ£¬Í¨¹ý¸Ãͳ¼ÆÊý¾Ý¹À¼Æµ±ÌìÎ¥Õ³µÁ¾Ô¼ÓжàÉÙÁ¾£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Ð¡ÃÀÖÜÄ©À´µ½¹«Ô°£¬·¢ÏÖÔÚ¹«Ô°Ò»½ÇÓÐÒ»ÖÖ¡°ÊØÖê´ýÍá±ÓÎÏ·£®ÓÎÏ·Éè¼ÆÕßÌṩÁËÒ»Ö»ÍÃ×ÓºÍÒ»¸öÓÐA¡¢B¡¢C¡¢D¡¢EÎå¸ö³öÈë¿ÚµÄÍÃÁý£¬¶øÇÒÁýÄÚµÄÍÃ×Ó´Óÿ¸ö³öÈë¿Ú×ß³öÍÃÁýµÄ»ú»áÊǾùµÈµÄ£®¹æ¶¨£º¢ÙÍæ¼ÒÖ»Äܽ«Ð¡ÍôÓA¡¢BÁ½¸ö³öÈë¿Ú·ÅÈ룬¢ÚÈç¹ûСÍýøÈëÁý×ÓºóÑ¡Ôñ´Ó¿ªÊ¼½øÈëµÄ³öÈë¿ÚÀ뿪£¬Ôò¿É»ñµÃÒ»Ö»¼ÛÖµ5ԪСÍÃÍæ¾ß£¬·ñÔòÿÍæÒ»´ÎÓ¦¸¶·Ñ3Ôª£®
£¨1£©ÇëÓñí¸ñ»òÊ÷״ͼÇóСÃÀÍæÒ»´Î¡°ÊØÖê´ýÍá±ÓÎÏ·Äܵõ½Ð¡ÍÃÍæ¾ßµÄ¸ÅÂÊ£»
£¨2£©¼ÙÉèÓÐ1000ÈË´ÎÍæ´ËÓÎÏ·£¬¹À¼ÆÓÎÏ·Éè¼ÆÕß¿É׬¶àÉÙÔª£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬Ã¿¸öС·½¸ñµÄ±ß³¤¶¼ÊÇ1£¬Çó£º
£¨1£©Çó¡÷ABCµÄÖܳ¤£»
£¨2£©»­³öBC±ßÉϵĸߣ¬²¢Çó¡÷ABCµÄÃæ»ý£»
£¨3£©»­³öAB±ßÉϵĸߣ¬²¢Çó³ö¸ß£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÈçͼÊÇ2017Äê1Ô·ݵÄÈÕÀú£¬ÔÚÈÕÀúÉÏÈÎÒâȦ³öÒ»¸öÊúÁÐÉÏÏàÁÚµÄ3¸öÊý£®Èç¹û±»È¦³öµÄÈý¸öÊýµÄºÍΪ63£¬ÔòÕâÈý¸öÊýÖÐ×îºóÒ»ÌìΪ2017Äê1ÔÂ28ºÅ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èôx=-2ÊǹØÓÚxµÄ·½³Ì£¨a-4£©x-16=0µÄÒ»¸ö½â£¬Ôòa=£¨¡¡¡¡£©
A£®-4B£®2C£®4D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Ð¡Ã÷ºÍСÁÁÕýÔÚ°´ÒÔÏÂÈý²½×öÓÎÏ·£º
µÚÒ»²½£ºÁ½ÈËͬʱÉì³öÒ»Ö»ÊÖ£¬Ð¡Ã÷³ö¡°¼ôµ¶¡±£¬Ð¡ÁÁ³ö¡°²¼¡±£»
µÚ¶þ²½£ºÁ½ÈËÔÙͬʱÉì³öÁíÒ»Ö»ÊÖ£¬Ð¡Ã÷³ö¡°Ê¯Í·¡±£¬Ð¡ÁÁ³ö¡°¼ôµ¶¡±£»
µÚÈý²½£ºÁ½ÈËͬʱËæ»ú³·È¥Ò»Ö»ÊÖ£¬²¢°´ÏÂÊöÔ¼¶¨Åж¨Ê¤¸º£ºÔÚÁ½È˸÷ÁôϵÄÒ»Ö»ÊÖÖУ¬¡°¼ôµ¶¡±Ê¤¡°²¼¡±£¬¡°²¼¡±Ê¤¡°Ê¯Í·¡±£¬¡°Ê¯Í·¡±Ê¤¡°¼ôµ¶¡±£¬Í¬Ê±ÊÖÊƲ¿·Öʤ¸º£®
£¨1£©ÇëÀûÓÃÁÐ±í·¨»ò»­Ê÷״ͼ·¨ÇóСÁÁ»ñʤµÄ¸ÅÂÊ£»
£¨2£©ÈôСÃ÷Ïëȡʤ£¬Äã¾õµÃСÃ÷Ó¦ÁôÏÂÄÄÖÖÊÖÊÆ£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸