【题目】如图,在中,
,
,
,动点
从点
出发,在
边上以每秒2
的速度向点
匀速运动,同时动点
从点
出发,在
边上以每秒
的速度向点
匀速运动,设运动时间为
(
),连接
.
(1)若,求
的值;
(2)若与
相似,求
的值;
(3)当为何值时,四边形
的面积最小?并求出最小值.
【答案】(1) ;(2)
或
;(3) 当
时,
取最小值,
.
【解析】
(1)由已知条件得出AB=10,BC=5,由题意知BM=2t,CN=
t,BN=5
t,由BM=BN得出方程2t=5
t,解方程即可;
(2)分两种情况:①当△MBN∽△ABC时,由相似三角形的对应边成比例得出比例式,即可得出t的值;
②当△NBM∽△ABC时,由相似三角形的对应边成比例得出比例式,即可得出t的值;
(3)过M作MD⊥BC于点D,则MD∥AC,证出△BMD∽△BAC,得出比例式求出MD=t;四边形ACNM的面积y=△ABC的面积-△BMN的面积,得出y是t的二次函数,由二次函数的性质即可得出结果.
解:(1)在中,∵
,
,
,
∴,
.
由题意知,
,
∴.
由,得
.
解得;
(2)①当∽
时,
得,即
解得;
②当∽
时,
得,即
解得
∴当或
时,
与
相似;
(3)如图,过点作
于点
,则
.
设四边形的面积为
.
由题意,得
∵
∴当时,
取最小值,
.
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,∠ACB=45°,AE⊥BC于点E,过点C作CF⊥AB于点F,交AE于点M.点N在边BC上,且AM=CN,连结DN.
(1)若AB=,AC=4,求BC的长;
(2)求证:AD+AM=DN.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线
.
(1)求抛物线的对称轴;
(2)当时,设抛物线与
轴交于
两点(点
在点
左侧),顶点为
,若
为等边三角形,求
的值;
(3)过(其中
)且垂直
轴的直线
与抛物线交于
两点.若对于满足条件的任意
值,线段
的长都不小于1,结合函数图象,直接写出
的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则( )
A. DE=EB B. DE=EB C.
DE=DO D. DE=OB
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G,
(1)如图,点D在线段CB上,四边形ACDE是正方形.
①若点G为DE的中点,求FG的长.
②若DG=GF,求BC的长.
(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.
(1)求一次函数的解析式;
(2)根据图象直接写出的x的取值范围;
(3)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一只不透明的袋子中装有个质地、大小均相同的小球,这些小球分别标有数字
,甲、乙两人每次同时从袋中各随机摸出
个球,并计算摸出的这
个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表
摸球总次数 | ||||||||||
“和为 | ||||||||||
“和为 |
解答下列问题:
如果实验继续进行下去,根据上表数据,出现“和为
”的频率将稳定在它的概率附近.估计出现“和为
”的概率是_______;
如果摸出的这两个小球上数字之和为
的概率是
,那么
的值可以取
吗?请用列表法或画树状图法说明理由;如果
的值不可以取
,请写出一个符合要求的
值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小区有一半径为8m的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线.在距水池中心3m处达到最高,高度为5m,且各个方向喷出的水柱恰好在喷水池中心的装饰物处汇合.以水平方向为x轴,喷水池中心为原点建立如图所示的平面直角坐标系.
(1)求水柱所在抛物线对应的函数关系式;
(2)王师傅在喷水池维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8m的王师傅站立时必须在离水池中心多少米以内?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知锐角三角形ABC内接于⊙O(AB>AC),AD⊥BC于点D,BE⊥AC于点E,AD、AE交于点F.
(1)如图1,若⊙O直径为10,AC=8,求BF的长;
(2)如图2,连接OA,若OA=FA,AC=BF,求∠OAD的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com