精英家教网 > 初中数学 > 题目详情

【题目】某天,小王去朋友家借书,在朋友家停留一段时间后,返回家中,如图是他离家的路程 (千米)与时间 (分)关系的图象,根据图象信息,下列说法正确的是 ( )

A. 小王去时的速度大于回家的速度 B. 小王去时走上坡路,回家时走下坡路

C. 小王去时所花时间少于回家所花时间 D. 小王在朋友家停留了

【答案】D

【解析】A、根据速度=路程÷时间,可求出小王去时的速度和回家的速度,比较后可得出A不正确;B、题干中未给出路况如何,故B不正确;C、先求出小王回家所用时间,比较后可得出C不正确;D、观察函数图象,求出小王在朋友家停留的时间,故D正确.综上即可得出结论.

A、小王去时的速度为2000÷20=100(米/分),

小王回家的速度为2000÷(40-30)=200(米/分),

100<200,

∴小王去时的速度小于回家的速度,A不正确;

B、∵题干中未给出小王去朋友家的路有坡度,

B不正确;

C、40-30=10(分),

20>10,

∴小王去时所花时间多于回家所花时间,C不正确;

D、30-20=10(分),

∴小王在朋友家停留了10分,D正确.

故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】向阳花卉基地出售两种花卉——百合和玫瑰,其单价为玫瑰4/株、百合5/株,如果同一客户所购的玫瑰数量大于1 200株,那么每株玫瑰还可降价1元.现某鲜花店向向阳花卉基地采购玫瑰1 0001 500株、百合若干株,恰好花去了9 000元,然后再以玫瑰5/株、百合6.5/株的价格卖出.问:此鲜花店应如何采购这两种鲜花才能使获得的毛利润最大?(注:1 0001 500株,表示大于或等于1 000株,且小于或等于1 500株,毛利润=鲜花店卖出百合和玫瑰所获的总金额购进百合和玫瑰所需的总金额)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】几何图形很神奇由一些多边形组成的图形中离不开边和顶点它们之间有着很多奥秘等待我们去探索.先看下面一道有趣的关于顶点和边的题:如图所示图①~图④都是平面图形.


(1)每个图中各有多少个顶点?多少条边?这些边围出多少个区域?请将结果填入下列表格中:

(2)根据(1)中的结论推断出一个平面图形的顶点数、边数、区域数之间有什么关系(设顶点数为n).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(π﹣3.14)0﹣| sin60°﹣4|+( 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4因式分解的过程.

解:设x2-4x=y,

则原式=(y+2)(y+6)+4(第一步)

=y2+8y+16(第二步)

=(y+4)2第三步

=(x2-4x+4)2第四步

解答下列问题:

(1)该同学第二步到第三步运用了因式分解的方法是(

A.提取公因式 B.平方差公式 C.两数和的完全平方公式 D.两数差的完全平方公式

(2)该同学因式分解的结果是否彻底?(填彻底不彻底”).若不彻底,请直接写出因式分解的最后结果

(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.

【答案】(1)C;(2)不彻底,(x-2)4;(3)(x-1)4.

【解析】试题分析:(1)从二步到第三步运用了完全平方和公式;(2)x2-4x+4可运用完全平方差公式因式分解;(3)x2-2x=y,将(x2-2x)(x2-2x+2)+1变形成y(y+2)+1的形式,再进行因式分解;

试题解析:

(1)运用了C,两数和的完全平方公式;

(2)不彻底;

(x2-4x+4)2=(x-2)4

(3)设x2-2x=y.

(x2-2x)(x2-2x+2)+1

=y(y+2)+1

=y2+2y+1

=(y+1)2…………………………7

=(x2-2x+1)2

=(x-1)4

型】解答
束】
24

【题目】乘法公式的探究及应用.

探究问题

1是一张长方形纸条,将其剪成长短两条后刚好能拼成图2.

1) (2

1)图1中长方形纸条的面积可表示为_______(写成多项式乘法的形式).

2)拼成的图2阴影部分的面积可表示为________(写成两数平方差的形式).

3)比较两图阴影部分的面积,可以得到乘法公式____.

结论运用

4运用所得的公式计算:

=________ =________.

拓展运用:

5)计算:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.
(1)画出△A1B1C,直接写出点A1、B1的坐标;
(2)求在旋转过程中,△ABC所扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠ADCABC90°ADCDDPAB于点P.若四边形ABCD的面积是18,则DP的长是(  )

A. 3 B. 2 C. 3 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系xOy中,矩形OABC的顶点A、C分别在x轴和y轴正半轴上,点B的坐标是(5,2),点P是CB边上一动点(不与点C、点B重合),连结OP、AP,过点O作射线OE交AP的延长线于点E,交CB边于点M,且∠AOP=∠COM,令CP=x,MP=y.

(1)当x为何值时,OP⊥AP?
(2)求y与x的函数关系式,并写出x的取值范围;
(3)在点P的运动过程中,是否存在x,使△OCM的面积与△ABP的面积之和等于△EMP的面积?若存在,请求x的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【背景】已知:lmnk,平行线lmmnnk之间的距离分别为d1d2d3,且d1d3=1,d2=2.我们把四个顶点分别在lmnk这四条平行线上的四边形称为“格线四边形” .

【探究1】(1)如图1,正方形ABCD为“格线四边形”,BEl于点EBE的反向延长线交直线k于点F.求正方形ABCD的边长.

【探究2】(2)如图2,菱形ABCD为“格线四边形”且∠ADC=60°,△AEF是等边三角形,AEk于点E,∠AFD=90°,直线DF分别交直线lk于点G、点M.求证:ECDF

【拓展】(3)如图3,lk,等边△ABC的顶点AB分别落在直线lk上,ABk于点B,且∠ACD=90°,直线CD分别交直线lk于点G、点M,点D、点E分别是线段GMBM上的动点,且始终保持ADAEDHl于点H.猜想:DH在什么范围内,BCDE?并说明此时BCDE的理由.

查看答案和解析>>

同步练习册答案