精英家教网 > 初中数学 > 题目详情

【题目】如图,已知∠1,∠2互为补角,且∠3=∠B,
(1)求证:∠AFE=∠ACB;
(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度数.

【答案】
(1)证明:∵∠1+∠FDE=180°,∠1,∠2互为补角,

∴∠2=∠FDE,

∴DF∥AB,

∴∠3=∠AEF,

∵∠3=∠B,

∴∠B=∠AEF,

∴FE∥BC,

∴∠AFE=∠ACB;


(2)解:∵∠1=80°,∠3=45°,

∴∠FED=80°﹣45°=35°,

∵EF∥BC,

∴∠BCE=∠FED=35°,

∵CE平分∠ACB,

∴∠ACB=2∠BCE=70°,

∴∠AFE=∠ACB=70°.


【解析】(1)求出DF∥AB,推出∠3=∠AEF,求出∠B=∠AEF,得出FE∥BC,根据平行线性质求出即可;(2)求出∠FED=80°﹣45°=35°,根据平行线性质求出∠BCE=∠FED=35°,求出∠ACB=2∠BCE=70°,根据平行线性质求出即可.
【考点精析】掌握平行线的判定与性质是解答本题的根本,需要知道由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ab=8,ab=15,则a2abb2________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a + b =3,b c = 12,则a + 2b c的值为( )

A. 15 B. 9 C. 15 D. 9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格购物券,可以重新在本商场消费,某顾客刚好消费200元.

(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;

(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知y0是关于y的一元二次方程(m1y2+my+4m240的一个根,那么m的值是(  )

A. 0B. ±1C. 1D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据要求计算:
(1)计算:| |+ +
(2)解方程组: ①

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】迎接学校“元旦”文艺汇演,八年级某班的全体同学捐款购买了表演道具,经过充分的排练准备,最终获得了一等奖.班长对全体同学的捐款情况绘制成下表:

捐款金额

5元

10元

15元

20元

捐款人数

10人

15人

5人

由于填表时不小心把墨水滴在了统计表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的30%,结合上表回答下列问题:
(1)该班共有名同学;
(2)该班同学捐款金额的众数是元,中位数是元.
(3)如果把该班同学的捐款情况绘制成扇形统计图,则捐款金额为20元的人数所对的扇形圆心角为度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,B点坐标为(x、y),且x、y满足|x+y﹣8|+(x﹣y)2=0.
(1)求B点坐标;
(2)如图,点A为y轴正半轴上一点,过点B作BC⊥AB,交x轴正半轴于点C,求证:AB=BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CE是△ABC外角∠ACD的平分线,AF∥CD交CE于点F,FG∥AC交CD于点G,求证:四边形ACGF是菱形.

查看答案和解析>>

同步练习册答案