精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,⊙M与x轴相交于点A、B,与y轴相交于点C、D,圆心M在x轴的负半轴上,过点C的圆的切线与线段DB的延长线相交于点P.已知:点C的坐标是(0,),tan∠BAC=
(1)求证:△PCB∽△PDC;
(2)求线段PC的长.

【答案】分析:(1)利用切线的性质得出∠MCB+∠PCB=90°,进而利用MC=MB,得出∠MCB=∠OBC,以及∠PCB=∠PDC即可得出;
(2)首先证明△AOC∽△COB,进而得出,进而得出OB,BD的长,由△PCB∽△PDC得出,即可得出PC的长.
解答:解:(1)连结MC,
∵圆心M在x轴的负半轴上,∴AB⊥CD于点O,
,∠OCB+∠OBC=90°,
∴∠OCB=∠PDC,
∵PC与⊙M相切于点C,∴PC⊥MC,
∴∠MCB+∠PCB=90°,
又∵MC=MB,∴∠MCB=∠OBC,∴∠PCB=∠PDC,
又∵∠P=∠P,∴△PCB∽△PDC;

(2)∵点C的坐标是



∵AB是⊙M的直径,∴∠ACB=90°,
∴∠OCB+∠ACO=90°,而∠OAC+∠ACO=90°,
∴∠OAC=∠OCB,
又∵∠AOC=∠COB=90°,
∴△AOC∽△COB,



设PC=x,
由△PCB∽△PDC得:

=
解得:PC=x=5.
点评:此题主要考查了相似三角形的判定与性质以及切线的判定与性质,熟练掌握相似三角形的判定方法得出△AOC∽△COB是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案