【题目】如图:在数轴上A点表示数a,B点表示数b,C点表示数C,b是最小的正整数,且a=﹣2,c=7.
(1)若将数轴折叠,使得A点与C点重合,则点B与数 表示的点重合;
(2)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.
则AB= ,AC= ,BC= .(用含t的代数式表示)
(3)请问:3BC﹣2AB的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.
【答案】(1)4;(2)AB=3t+3,AC=5t+9,BC=2t+6;(3)3BC﹣2AB的值不随着时间的变化而改变,值为12.
【解析】
(1)先由题意得出b的值,再根据将数轴折叠,使得A点与C点重合,得出点A与点C距离对折点的距离,从而可得答案;
(2)根据题意,分别用起点之间的距离加上运动后的路程,即可得答案;
(3)将(2)中BC和AB的表达式代入,直接计算3BC﹣2AB,可得结果为常数,据此可解.
解:(1)∵b是最小的正整数
∴b=1
已知a=﹣2,c=7
(7+2)÷2=4.5
7﹣4.5=2.5,2.5+(2.5﹣1)=4
∴点B与数4表示的点重合.
故答案为:4.
(2)由题意得:
AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=4t-2t+6=2t+6;
故答案为:3t+3,5t+9,2t+6.
(3)不变.
∵BC=2t+6,AB=3t+3
∴3BC﹣2AB=3(2t+6)﹣2(3t+3)
=6t+18﹣6t﹣6
=12.
∴3BC﹣2AB的值不随着时间的变化而改变.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得≌ 即可得,则可证得为的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OE∥AB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得与的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为
【题型】解答题
【结束】
25
【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在研究反比例函数y=﹣的图象时,我们发现有如下性质:
(1)y=﹣的图象是中心对称图形,对称中心是原点.
(2)y=﹣的图象是轴对称图形,对称轴是直线y=x,y=﹣x.
(3)在x<0与x>0两个范围内,y随x增大而增大;
类似地,我们研究形如:y=﹣+3的函数:
(1)函数y=﹣+3图象是由反比例函数y=﹣图象向____平移______个单位,再向_______平移______个单位得到的.
(2)y=﹣+3的图象是中心对称图形,对称中心是______.
(3)该函数图象是轴对称图形吗?如果是,请求出它的对称轴,如果不是,请说明理由.
(4)对于函数y=,x在哪些范围内,y随x的增大而增大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】菱形ABCD的边长是4,∠DAB=60,点M,N分别在边AD,AB上,MN⊥AC,垂足为P,把△AMN沿MN折叠得到△A'MN,若△A'DC恰为等腰三角形,则AP的长为_____。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,点E、F在对角线BD上,且BF=DE
(1)求证:△ADE≌△CBF.
(2)若AE=3,AD=4,∠DAE=90°,该判断当BE的长度为多少时,四边形AECF为菱形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+与x轴、y轴分别交于点A、B,在坐标轴上找点P,使△ABP为等腰三角形,则点P的个数为( )
A. 2B. 4C. 6D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把下列各数填入相应的集合.
-17,6.8,+48,0,,-7.9,-π,-5,-,,29,-20%
正数集合:{________________________________…};
负分数集合:{________________________________…};
整数集合:{________________________________…}.
非负整数集合{________________________________…}.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在手工制作课上,老师组织七年级(2)班的学生用硬纸制作圆柱形茶叶筒.七年级(2)班共有学生44人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身50个或剪筒底120个.
(1)七年级(2)班有男生、女生各多少人?
(2)要求一个筒身配两个筒底,为了使每小时剪出的筒身与筒底刚好配套,应该分配多少名学生剪筒身,多少名学生剪筒底?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形是矩形,点的坐标为(0,6),点的坐标为(4,0),点从点出发,沿以每秒2个单位长度的速度向点出发,同时点从点出发,沿以每秒3个单位长度的速度向点运动,当点与点重合时,点、同时停止运动.设运动时间为秒.
(1)当时,请直接写出的面积为_____________;
(2)当与相似时,求的值;
(3)当反比例函数的图象经过点、两点时,
①求的值;
②点在轴上,点在反比例函数的图象上,若以点、、、为顶点的四边形是平行四边形,请直接写出所有满足条件的的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com