精英家教网 > 初中数学 > 题目详情
(2011•陕西)如图①,在矩形ABCD中,将矩形折叠,使B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于F,然后展开铺平,则以B、E、F为顶点的三角形△BEF称为矩形ABCD的“折痕三角形”
(1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕△BEF”是一个  三角形
(2)如图②、在矩形ABCD中,AB=2,BC=4,,当它的“折痕△BEF”的顶点E位于AD的中点时,画出这个“折痕△BEF”,并求出点F的坐标;
(3)如图③,在矩形ABCD中,AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF”?若存在,说明理由,并求出此时点E的坐标?若不存在,为什么?
解:(1)等腰.
(2)如图①,连接BE,画BE的中垂线交BC与点F,连接EF,△BEF是矩形ABCD的一个折痕三角形.
∵折痕垂直平分BE,AB=AE=2,
∴点A在BE的中垂线上,即折痕经过点A.
∴四边形ABFE为正方形.
∴BF=AB=2,
∴F(2,0).
(3)矩形ABCD存在面积最大的折痕三角形BEF,其面积为4,
理由如下:①当F在边BC上时,如图②所示.
S△BEFS矩形ABCD,即当F与C重合时,面积最大为4.
②当F在边CD上时,如图③所示,
过F作FH∥BC交AB于点H,交BE于K.
∵S△EKF=KF•AH≤HF•AH=S矩形AHFD
S△BKF=KF•BH≤HF•BH=S矩形BCFH
∴S△BEFS矩形ABCD=4.
即当F为CD中点时,△BEF面积最大为4.
下面求面积最大时,点E的坐标.
①当F与点C重合时,如图④所示.
由折叠可知CE=CB=4,
在Rt△CDE中,ED===2
∴AE=4﹣2
∴E(4﹣2,2).
②当F在边DC的中点时,点E与点A重合,如图⑤所示.
此时E(0,2).
综上所述,折痕△BEF的最大面积为4时,点E的坐标为E(0,2)或E(4﹣2,2).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知,如图,梯形ABCD中,AD∥BC,∠A=90°,∠C=45°,BE⊥DC于E,BC=5,AD:BC=2:5.求ED的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(11·贵港)如图所示,在矩形ABCD中,AB=,BC=2,对角线AC、BD
相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是
A.   B.   C.1         D.1.5

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,将边长为6cm的正六边形纸板的六个角各剪切去一个全等的四边形,再
沿虚线折起,做成一个无盖直六棱柱纸盒,使侧面积等于底面积,被剪去的六个四边形的面
积和为           cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图, 等腰梯形两底之差等于一腰的长,那么这个梯形较小内角的度数是
A.  B.  C. D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2011•宁夏)等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,则等腰梯形的下底是(  )
A.5cmB.6cm
C.7cmD.8cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2011•海南)正方形是轴对称图形,它的对称轴共有(  )
A.1条B.2条
C.3条D.4条

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(11·永州)(本题满分8分)如图,BD是□ABCD的对角线,∠ABD的平分线
BE交AD于点E,∠CDB的平分线DF交BC于点F.
求证:△ABE≌△CDF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(11·柳州)如图,阴影部分是一块梯形铁片的残余部分,量得∠A=100º,∠B=115º,则梯形另外两个底角的度数分别是
A.100º、115ºB.100º、65ºC.80º、115ºD.80º、65º

查看答案和解析>>

同步练习册答案