精英家教网 > 初中数学 > 题目详情
(A类8分)在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.试判断AF与CE是否相等,并说明理由.
(B类9分)如图,四边形ABCD是矩形,E是AB上一点,且DE=CD,CF⊥DE,垂足为F.试说明AD与CF是否相等,并说明理由.
(C类10分)如图,在菱形ABCD中,∠DAB=60°,CE⊥AC且与AB的延长线交于点E.试说明四边形AECD是等腰梯形.
分析:A类:由平行四边形的性质和角平分线的定义,得△ADF和△CBE全等的条件,由全等三角形的性质可得AF=CE.
B类:由矩形的性质,得∠AED=∠FDC,∠A=90°,再运用AAS证明△ADE≌△FCD,从而得到AD=CF.
C类:要证四边形AECD是等腰梯形,只要证得∠DAB=∠E,AB∥CD即可.根据菱形的对角线平分每一组对角,结合垂直的定义,可得∠DAB=∠E=60°,又菱形的对边AB∥CD,所以得证四边形AECD是等腰梯形.
解答:解:A类:AF=CE.
∵四边形ABCD是平行四边形
∴AD=CB,∠A=∠C,∠ADC=∠ABC
∵∠ADF=
1
2
∠ADC,∠CBE=
1
2
∠ABC
∴∠ADF=∠CBE
在△ADF和△CBE
AD=CB,∠A=∠C
∴△ADF≌△CBE
∴∠ADF=∠CBE
∴AF=CE.
(B类)AD=CF
证明:∵四边形ABCD是矩形
∴∠AED=∠FDC,∠A=90°
在△ADE和△FCD中
∵∠CFD=∠A=90°,DE=CD,∠AED=∠FDC
∴△ADE≌△FCD
∴AD=CF
(C类10分)
证明:∵四边形ABCD是菱形
∴AC平分∠DAB
∵AB∥CD,∠DAB=60°
∴∠CAE=
1
2
∠DAB=30°.
∵CE⊥AC
∴∠E=90°-∠CAE=90°-30°=60°
∴∠DAB=∠E
∵∠DAB=∠E,AB∥CD
∴四边形AECD是等腰梯形.
点评:等腰梯形是一组对边平行,另一组对边不平行且相等的四边形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本题满分10分)在平行四边形ABCD中,AB=10,∠ABC=60°,以AB为直径作⊙O,边CD切⊙O于点E

 

1.⑴求圆心OCD的距离;

2.⑵求DE的长;

3.⑶求由弧AE、线段ADDE所围成的阴影部分的面积.

 (结果保留π和根号)

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分10分)在平行四边形ABCD中,AB=10,∠ABC=60°,以AB为直径作⊙O,边CD切⊙O于点E

【小题1】⑴求圆心OCD的距离;
【小题2】⑵求DE的长;
【小题3】⑶求由弧AE、线段ADDE所围成的阴影部分的面积.
(结果保留π和根号)

查看答案和解析>>

科目:初中数学 来源:2012届江苏省兴化市九年级上学期期末四校联考数学卷 题型:解答题

(本题满分10分)在平行四边形ABCD中,AB=10,∠ABC=60°,以AB为直径作⊙O,边CD切⊙O于点E

【小题1】⑴求圆心OCD的距离;
【小题2】⑵求DE的长;
【小题3】⑶求由弧AE、线段ADDE所围成的阴影部分的面积.
(结果保留π和根号)

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省兴化市九年级上学期期末四校联考数学卷 题型:解答题

(本题满分10分)在平行四边形ABCD中,AB=10,∠ABC=60°,以AB为直径作⊙O,边CD切⊙O于点E

 

1.⑴求圆心OCD的距离;

2.⑵求DE的长;

3.⑶求由弧AE、线段ADDE所围成的阴影部分的面积.

 (结果保留π和根号)

 

查看答案和解析>>

同步练习册答案