【题目】如图,抛物线,经过点.
(1)求抛物线的解析式及顶点M的坐标;
(2)连接AC、BC,N为抛物线上的点且在第一象限,当时,求N点的坐标;
(3)我们通常用表示整数的最大公约数,例如. 若,则称a、b互素,关于最大公约数有几个简单的性质:①,其中k为任意整数;②; 若点满足:a,b均为正整数,且,则称Q点为“互素正整点”,当时,该抛物线上有多少个“互素正整点”?
【答案】(1)抛物线的顶点M坐标为;(2)N(4,5);(3)在时,该抛物线上有65个“互素正整点”
【解析】
(1)将A、B、C三点坐标代入中即可得到答案;
(2)设,求得直线NC的解析式为y=(t-2)x-3,设设直线CN与x轴交于点D,求出点D的坐标,根据即可列式计算得出点N的坐标;
(3)抛物线上的任意正整点R(横纵坐标为正整数的点)可以表示为,得到,找到符合条件的值即可得到答案.
(1)∵抛物线经过点A(﹣1,0),B(3,0),C(0,-3),
解得:,
∴=,
抛物线的顶点M坐标为;
(2)∵N是抛物线上第一象限的点,
∴设(t>0),又点C(0,-3),
设直线NC的解析式为,N在直线NC上,
解得k=t-2
∴直线NC的解析式为y=(t-2)x-3,
设直线CN与x轴交于点D,
当y=0时,x=,
∴D(,0),BD=3﹣,
∵S△NBC=S△ABC,
∴S△CDB+S△BDN=ABOC,即BD|yC﹣yN|= [3﹣(﹣1)]×3,
即×(3﹣)[3﹣(﹣t2+2t+3)]=6,
整理,得:t2﹣3t﹣4=0,
解得:t1=4,t2=﹣1(舍去),
当t=4时,t2-2t-3=5,
∴N(4,5);
(3)抛物线上的任意正整点R(横纵坐标为正整数的点)可以表示为:
,t为正整数,且,
由性质①②,t与的最大公约数,
,
即只需满足即可,又因为3是素数,当且仅当t不是3的倍数时,t与3互素,
在4到100共97个数中,总共有32个数是3的倍数,
故共有65个数不是3的倍数,满足,
即在时,该抛物线上有65个“互素正整点”.
科目:初中数学 来源: 题型:
【题目】已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.
(1)求抛物线的解析式;
(2)求△MCB的面积.
(3)在坐标轴上,是否存在点N,满足△BCN为直角三角形?如存在,请直接写出所有满足条件的点N.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.
(1)求证:AH是⊙O的切线;
(2)若OB=4,AC=6,求sin∠ACB的值;
(3)若,求证:CD=DH.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB是⊙O的直径,弦CD与AB相交于点E,连接AD,BC,已知AE=AD,∠BAD=34°.
(1)如图①,连接CO,求∠ADC和∠OCD的大小;
(2)如图②,过点D作⊙O的切线与CB的延长线交于点F,连接BD,求∠BDF的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】.如图,圆柱底面半径为,高为,点分别是圆柱两底面圆周上的点,且、在同一母线上,用一棉线从顺着圆柱侧面绕3圈到,求棉线最短为_________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,是角平分线,是中线,于点G,交于点F,交于点M,的延长线交于点H.
(1)图中与线段相等的线段是________;
(2)求证:点H为线段的中点;
(3)若,探究线段与之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,的顶点A、B分别在x轴,y轴上,,且的面积为8.
直接写出A、B两点的坐标;
过点A、B的抛物线G与x轴的另一个交点为点C.
若是以BC为腰的等腰三角形,求此时抛物线的解析式;
将抛物线G向下平移4个单位后,恰好与直线AB只有一个交点N,求点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在我校举行的小科技创新发明比赛中,共有60人获奖,组委会原计划按照一等奖5人,二等奖15人,三等奖40人进行奖励.后来经学校研究决定,在该项奖励总奖金不变的情况下,各等级获奖人数实际调整为:一等奖10人,二等奖20人,三等奖30人,调整后一等奖每人奖金降低80元,二等奖每人奖金降低50元,三等奖每人奖金降低30元,调整前二等奖每人奖金比三等奖每人奖金多70元,则调整后一等奖每人奖金比二等奖每人奖金多____元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,按以下步骤作图:①分别以 B,C 为圆心,以大于BC 的长为半径作弧,两弧相交于两点 M,N;②作直线 MN 交 AB 于点 D,连接 CD.若 CD=AC,∠A=50°,则∠ACB 的度数为
A.90°B.95°C.105°D.110°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com