精英家教网 > 初中数学 > 题目详情
如图,抛物线经过A(-1,0),B(5,0),C(0,?)三点.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.
(1)抛物线的解析式为:
(2)P(2,-);
(3)存在,符合条件的点N的坐标为(4,-),(2+)或(2-).

试题分析:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),再把A(-1,0),B(5,0),C(0,?)三点代入求出a、b、c的值即可;
(2)因为点A关于对称轴对称的点B的坐标为(5,0),连接BC交对称轴直线于点P,求出P点坐标即可;
(3)分点N在x轴下方或上方两种情况进行讨论.
(1)设抛物线的解析式为y=ax2+bx+c(a≠0),
∵A(-1,0),B(5,0),C(0,?)三点在抛物线上,

解得 .
∴抛物线的解析式为:
(2)∵抛物线的解析式为:
∴其对称轴为直线
连接BC,如图1所示,

∵B(5,0),C(0,-),
∴设直线BC的解析式为y=kx+b(k≠0),
 ,
解得 ,
∴直线BC的解析式为
当x=2时,y=1-=-
∴P(2,-);
(3)存在.
如图2所示,

①当点N在x轴下方时,;
∵抛物线的对称轴为直线x=2,C(0,-),∴N1(4,-
②当点N在x轴上方时,
如图,过点N2作N2D⊥x轴于点D,
在△AN2D与△M2CO中,
 ,
∴△AN2D≌△M2CO(ASA),
∴N2D=OC=,即N2点的纵坐标为

解得x=2+或x=2-
∴N2(2+),N3(2-).
综上所述,符合条件的点N的坐标为(4,-),(2+)或(2-).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线经过点A(3,2),B(0,1)和点C
(1)求抛物线的解析式;
(2)如图,若抛物线的顶点为P,点A关于对称轴的对称点为M,过M的直线交抛物线于另一点N(N在对称轴右边),交对称轴于F,若,求点F的坐标;
(3)在(2)的条件下,在y轴上是否存在点G,使△BMA与△MBG相似?若存在,求点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.
(1)若花园的面积为192m2,  求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+2x+c的顶点为A(―1,―4),与y轴交于点B,与x轴负半轴交于点C.

(1)求这条抛物线的函数关系式;
(2)点P为第三象限内抛物线上的一动点,连接BC、PC、PB,求△BCP面积的最大值,并求出此时点P的坐标;
(3)点E为抛物线上的一点,点F为x轴上的一点,若四边形ABEF为平行四边形,请直接写出所有符合条件的点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,抛物线y=-x2+bx+c的顶点为Q,与x轴交于A(-1,0)、B(5,0)两点,与y轴交于点C.
(1)求抛物线的解析式及其顶点Q的坐标;
(2)在该抛物线的对称轴上求一点P,使得△PAC的周长最小,请在图中画出点P的位置,并求点P的坐标;
(3)如图2,若点D是第一象限抛物线上的一个动点,过D作DE⊥x轴,垂足为E.
①有一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点Q与x轴相距最远,所以当点D运动至点Q时,折线D-E-O的长度最长”,这个同学的说法正确吗?请说明理由.
②若DE与直线BC交于点F.试探究:四边形DCEB能否为平行四边形?若能,请直接写出点D的坐标;若不能,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知关于的一元二次方程有实数根,为正整数.
(1)求的值;
(2)当此方程有两个不为0的整数根时,将关于的二次函数的图象向下平移2个单位,求平移后的函数图象的解析式;
(3)在(2)的条件下,将平移后的二次函数图象位于轴左侧的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象G.当直线与图象G有3个公共点时,请你直接写出的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线y =-2x2-3的顶点坐标是                 

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程的解为                      

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正方形ABCD的边长为6cm,O是AB的中点,也是抛物线的顶点,OP⊥AB,两半圆的直径分别为OA,OB,抛物线经过C,D两点,且关于OP对称,则图中阴影部分的面积为(  )(π取3.14,结果保留两位小数)
A.7.07cm2
B.3.53cm2
C.14.13cm2
D.10.60cm2

查看答案和解析>>

同步练习册答案