精英家教网 > 初中数学 > 题目详情

圆柱的底面半径为10cm,当圆柱的高变化时圆柱的体积也随之变化,
(1)在这个变化过程中自变量是什么?因变量是什么?
(2)设圆柱的体积为V,圆柱的高为h,则V与h的关系是什么?
(3)当h每增加2,V如何变化?

解:(1)由于圆柱的高变化时圆柱的体积也随之变化,所以自变量是圆柱的高h,因变量是圆柱的体积V;

(2)圆柱的体积V与圆柱的高的关系式是:V=100πh.

(3)由于V=100π(h+2)=100πh+200π.
所以当h每增加2时,V增加200πcm3
分析:(1)根据自变量及因变量的定义,即可回答;
(2)根据圆柱的体积公式可得出关系式;
(3)分别计算出高为h和高为h+2时圆柱的体积.
点评:本题考查了函数关系式、函数值及变量的知识,属于基础题,注意课本基础知识的掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:
问题:如图(2),一圆柱的高AB=5dm,底面半径为5dm,BC是底面直径,求一只蚂蚁从A点出发沿圆柱表面爬行到点C的最短路线.小明设计了两条路线:
路线1:沿侧面展开图中的线段AC.如下图(2)所示:
精英家教网
设路线1的长度为l1,则l12=AC2=AB2+BC2=52+(5π)2=25+25π2
路线2:高线AB+底面直径BC.如上图(1)所示:
设路线2的长度为l2,则l22=(AB+BC)2=(5+10)2=225
∵l12-l22=25+25π2-225=25π2-200=25(π2-8)>0
∴l12>l22,∴l1>l2
所以要选择路线2较短.
(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1dm,高AB仍为5dm”继续按前面的路线进行计算.请你帮小明完成下面的计算:
路线1:l12=AC2=AB2+BC2=
 

路线2:l22=(AB+BC)2=
 

∵l12
 
l22,∴l1
 
l2( 填>或<)
所以应选择路线
 
(填1或2)较短.
(2)请你帮小明继续研究:设圆柱的底面半径为r,高为h,当蚂蚁走上述两条路线的路程出现相等情况时,求出此时h与r的比值(本小题π的值取3).

查看答案和解析>>

科目:初中数学 来源: 题型:

4、已知圆柱的底面半径为2cm,高为5cm,则圆柱的侧面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

问题:如图(1),一圆柱的底面半径为5分米,高AB为5分米,BC是底面直径,求一只蚂蚁从A点出发沿圆柱表面爬行到点C的最短路线.小明设计了两条路线:
路线1:侧面展开图中的线段AC.如图(2)所示:设路线1的长度为l1,则l12=AC2=AB2+BC2=52+(5π)2=25+25π2
路线2:高线AB+底面直径BC.如图(1)所示:设路线2的长度为l2,则l22=(AB+BC)2=(5+10)2=225,∵l12-l22>0,
∴l12>l22,∴l1>l2,所以要选择路线2较短.

(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1分米,高AB为5分米”继续按前面的路线进行计算.请你帮小明完成下面的计算:
路线1:l12=AC2=
25+π2
25+π2

路线2:l22=(AB+BC)2=
49
49
.∴l1
l2 ( 填>或<),所以应选择路线
1
1
(填1或2)较短.
(2)请你帮小明继续研究:在一般情况下,当圆柱的底面半径为r,高为h时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到C点的路线最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知圆柱的底面半径为2cm,高为5cm,则圆柱的侧面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一只蚂蚁从点A沿圆柱表面爬到点B,圆柱的高为8cm,圆柱的底面半径为
6
π
cm,那么最短的路线长是(  )

查看答案和解析>>

同步练习册答案