精英家教网 > 初中数学 > 题目详情
抛物线经过点A(4,0),B(2,2),连结OB,AB.

(1)求的值;
(2)求证:△OAB是等腰直角三角形;
(3)将△OAB绕点O按顺时针方向旋转l35°得到△OA′B′,写出A′B′的中点P的出标.试判断点P是否在此抛物线上,并说明理由.
(1);(2)证明见解析;(3)点不在抛物线上.

试题分析:(1)将A、B的坐标代入抛物线的解析式中,通过联立方程组即可求出抛物线的解析式;
(2)过B作BC⊥x轴于C,根据A、B的坐标易求得OC=BC=AC=2,由此可证得∠BOC、∠BAC、∠OBC、∠ABC都是45°,即可证得△OAB是等腰直角三角形;
(3)当△OAB绕点O按顺时针方向旋转135°时,OB′正好落在y轴上,易求得OB、AB的长,即可得到OB′、A′B′的长,从而可得到A′、B′的坐标,进而可得到A′B′的中点P点的坐标,然后代入抛物线中进行验证即可.
试题解析:⑴ 由题意,得:,
解得:
⑵ 过点轴于点,则,

,
,
是等腰直角三角形;
⑶∵是等腰直角三角形,,
,
由题意,得:点坐标为,
的中点的坐标为,
时,
∴点不在抛物线上.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=ax2+bx+c的图象的顶点为M(2,1),且过点N(3,2).

(1)求这个二次函数的关系式;
(2)若一次函数y=-x-4的图象与x轴交于点A,与y轴交于点B,P为抛物线上的一个动点,过点P作PQ∥y轴交直线AB于点Q,以PQ为直径作圆交直线AB于点D.设点P的横坐标为n,问:当n为何值时,线段DQ的长取得最小值?最小值为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图是一座古拱桥的截面图.在水平面上取点为原点,以水平面为轴建立直角坐标系,桥洞上沿形状恰好是抛物线的图像.桥洞两侧壁上各有一盏距离水面4米高的景观灯.请求出这两盏景观灯间的水平距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线的对称轴是(      )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知直线分别与y轴、x轴相交于A、B两点,与二次函数的图像交于A、C两点.

(1)当点C坐标为()时,求直线AB的解析式;
(2)在(1)中,如图,将△ABO沿y轴翻折180°,若点B的对应点D恰好落在二次函数的图像上,求点D到直线AB的距离;
(3)当-1≤x≤1时,二次函数有最小值-3,求实数m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线的顶点A的坐标为(3,15),且过点(-2,10),对称轴AB交轴于点B,点E是线段AB上一动点,以EB为边在对称轴右侧作矩形EBCD,使得点D恰好落在抛物线上,点D′是点D关于直线EC的轴对称点.

(1)求抛物线的解析式;
(2)若点D′恰好落在轴上的点(0,6)时,求此时D点的坐标;
(3)直线CD′交对称轴AB于点F,
①当点D′在对称轴AB的左侧时,且△ED′F∽△CDE,求出DE:DC的值;
②连结B D′,是否存在点E,使△E D′B为等腰三角形?若存在,请直接写出BE:BC的值,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数y=ax+bx+c的图像如图所示,则不等式ax+bx+c>0的解集是            

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

.如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M="0." 下列判断:
①当x>0时,y1>y2
②当x<0时,x值越大,M值越小;
③使得M大于2的x值不存在;
④使得M=1的x值是.其中正确的是( )
A.①②B.①④C.②③ D.③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则=       .

查看答案和解析>>

同步练习册答案