【题目】已知:如图,在△ABC中,AB=AC,∠A=36°,∠ABC的平分线交AC于D,
(1)求证:△ABC∽△BCD;
(2)若BC=2,求AB的长.
【答案】(1)证明见解析;(2).
【解析】
试题(1)根据角平分线的性质得到∠DBC=∠A,已知有一组公共角,则根据有两组角对应相等则两三角形相似可得到△ABC∽△BCD;
(2)相似三角形的对应边对应成比例,且由已知可得到BD=BC=AD,从而便可求得AB的长.
试题解析:(1)∵AB=AC,∠A=36°,
∴∠ABC=∠C=72°.
∵BD平分∠ABC,
∴∠ABD=∠DBC=36°.
∴∠DBC=∠A=36°.
又∵∠ABC=∠C,
∴△ABC∽△BCD.
(2)∵∠ABD=∠A=36°,
∴AD=BD,∠BDC=∠C=72°.
∴BD=BC=AD.
∵△ABC∽△BCD,
∴.
即.
解得:AB=或(不符合题意).
∴AB=.
考点: 1.等腰三角形的性质;2.角平分线的性质;3.相似三角形的判定与性质.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=ax2+bx+3经过点A(3,0)和点B(4,3).
(1)求这条抛物线所对应的二次函数的表达式.
(2)直接写出该抛物线开口方向和顶点坐标.
(3)直接在所给坐标平面内画出这条抛物线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(3,0),C(1,﹣1),AC交x轴于点P.
(1)∠ACB的度数为_____;
(2)P点坐标为______;
(3)以点O为位似中心,将△ABC放大为原来的2倍,请在图中画出所有符合条件的三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017浙江省宁波市)在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:
如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连接EF,FG,GH,HE.
(1)求证:四边形EFGH为平行四边形;
(2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,∠ABE=45°,点E在DC上,AE,BC的延长线相交于点F,若AE=10,则S△ADE+S△CEF的值是______ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】公园里有甲、乙两组游客正在做团体游戏,两组游客的年龄如下:(单位:岁)
甲组:13,13,14,15,15,15,15,16,17,17;
乙组:3,4,4,5,5,6,6,6,54,57.
我们很想了解一下甲、乙两组游客的年龄特征,请你运用“数据的代表”的有关知识对甲、乙两组数据进行分析,帮我们解决这个问题.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:
x | -1 | 0 | 1 | 3 |
y | -3 | 1 | 3 | 1 |
下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4,其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点.
(1)请求出抛物线的解析式;
(2)当0<x<4时,请直接写出y的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com