精英家教网 > 初中数学 > 题目详情
(2008•双柏县)我市农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A、B、C三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B种水果的重量不超过装运的A、C两种水果重量之和.
水果品种ABC
每辆汽车运装量(吨)2.22.12
每吨水果获利(百元)685
(1)设用x辆汽车装运A种水果,用y辆汽车装运B种水果,根据下表提供的信息,求y与x之间的函数关系式并写出自变量的取值范围;
(2)设此次外销活动的利润为Q(万元),求Q与x之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.
【答案】分析:(1)关键描述语:某乡组织30辆汽车装运A、B、C三种水果共64吨到外地销售,根据每辆汽车运装量和汽车的辆数,可列出y与x之间的函数关系式,再根据装运每种水果的汽车不少于4辆,装运的B种水果的重量不超过装运的A、C两种水果重量之和.
可将自变量x的取值范围求出;
(2)根据水果品种每吨水果的利润和销售的数量,可将此次外销活动的利润Q表示出来,根据x的取值范围,从而将最大利润时车辆的分配方案求出.
解答:解:(1)由题得到:2.2x+2.1y+2(30-x-y)=64,所以y=-2x+40,
又因为x≥4,y≥4,30-x-y≥4,
则-2x+40≥4,30-x-(-2x+40)≥4,
得到14≤x≤18;
∵y≤x+30-x-y,y=-2x+40,
∴x≥12.5,
∴14≤x≤18;

(2)Q=6×2.2x+8×2.1y+5×2(30-x-y)=-10.4x+572,
Q随着x的减小而增大,又因为14≤x≤18,所以当x=14时,Q取得最大值,即Q=42640(元)=4.264(万元).
此时应这样安排:A水果用14辆车,B水果用12辆车,C水果用4辆车.
点评:本题主要考查一次函数在实际生活中的应用,在解题过程中应确定未知量的取值范围.
练习册系列答案
相关习题

科目:初中数学 来源:2011年山东省中考数学模拟试卷(四)(解析版) 题型:解答题

(2008•双柏县)已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求A、B、C三点的坐标;
(2)求此抛物线的表达式;
(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年甘肃省兰州市中考数学模拟试卷(四)(解析版) 题型:解答题

(2008•双柏县)已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求A、B、C三点的坐标;
(2)求此抛物线的表达式;
(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年甘肃省兰州市中考数学模拟试卷(四)(解析版) 题型:选择题

(2008•双柏县)已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度v(km/h)的函数关系图象大致是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:2010年江苏省南京市六合区中考数学一模试卷(解析版) 题型:解答题

(2008•双柏县)已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求A、B、C三点的坐标;
(2)求此抛物线的表达式;
(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年云南省楚雄州双柏县中考数学试卷(解析版) 题型:选择题

(2008•双柏县)已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度v(km/h)的函数关系图象大致是( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案