精英家教网 > 初中数学 > 题目详情

【题目】如图,长方形广告牌架在楼房顶部,已知CD=2m,经测量得到∠CAH=37°,DBH=60°,AB=10m,求GH的长.(参考数据:tan37°≈0.75, ≈1.732,结果精确到0.1m)

【答案】7.8m.

【解析】

首先构造直角三角形,设DE=xm,则CE=(x+2)m,由三角函数得出AEBE,由AE=BE=AB得出方程,解方程求出DE,即可得出GH的长.

解:延长CD交AH于点E,如图所示:根据题意得:CE⊥AH, 设DE=xm,则CE=(x+2)m,
在Rt△AEC和Rt△BED中,tan37°= ,tan60°=
∴AE= ,BE=
∵AE﹣BE=AB,
=10,
=10,
解得:x≈5.8,
∴DE=5.8m,
∴GH=CE=CD+DE=2m+5.8m=7.8m.
答:GH的长为7.8m.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:

(1)请将下表补充完整:(参考公式:方差S2= [(x12+(x22+…+(xn2])

平均数

方差

中位数

7

   

7

   

5.4

   

(2)请从下列三个不同的角度对这次测试结果进行

①从平均数和方差相结合看,   的成绩好些;

②从平均数和中位数相结合看,   的成绩好些;

③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BDCF相交于点H,给出下列结论:

BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;DP2=PHPC

其中正确的是_____(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家家电下乡政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出 4台.商场要想在这种冰箱销售中每天盈利 4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以△ABC的三边在BC同侧分别作三个等边三角形△ABD,△BCE ,△ACF,试回答下列问题:

1)四边形ADEF是什么四边形?请证明:

2)当△ABC满足什么条件时,四边形ADEF是矩形?

3)当△ABC满足什么条件时,四边形ADEF是菱形?

4)当△ABC满足什么条件时,能否构成正方形?

5)当△ABC满足什么条件时,无法构成四边形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新课程改革十分关注学生的社会实践活动,小明在一次社会实践活动中负责了解他所居住的小区500户居民的家庭月人均收入情况,他从中随机调查了40户居民家庭的家庭月人均收入情况(收入取整数,单位:元),并绘制了频数分布表和频数分布直方图(如图).

分组

频数

占比

1000≤x<2000

3

7.5%

2000≤x<3000

5

12.5%

3000≤x<4000

a

30%

4000≤x<5000

8

20%

5000≤x<6000

b

c

6000≤x<7000

4

10%

合计

40

100%

(1)频数分布表中,a=   ,b=   ,C=   ,请根据题中已有信息补全频数分布直方图;

(2)观察已绘制的频数分布直方图,可以看出组距是   ,这个组距选择得   (填不好),并请说明理由.

(3)如果家庭人均月收入大于3000元不足6000的为中等收入家庭,则用样本估计总体中的中等收入家庭大约有   户.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′CD于点E.若AB=6,则AEC的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC ABAC,点 O ABC 的外心BOC=60°,BC=2,则 SABC_

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等边△ABC,AB=4,以AB为直径的半圆与BC边交于点D,过点DDEAC,垂足为E,过点EEFAB,垂足为F,连接FD.

(1)求证:DE是⊙O的切线;

(2)EF的长.

查看答案和解析>>

同步练习册答案