精英家教网 > 初中数学 > 题目详情

【题目】如图,某中学校园内有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,学校计划在中间留一块边长为(a+b)米的正方形地块修建一座雕像,然后将阴影部分进行绿化.

1)求绿化的面积.(用含ab的代数式表示)

2)当a2b4时,求绿化的面积.

【答案】1)(5a2+3ab)平方米;(2)绿化面积是44平方米.

【解析】

1)先找到绿化面积=矩形面积-正方形面积的等量关系,然后再利用多项式乘多项式法则以及完全平方公式化简即可解答;

2)将ab的值代入(1)计算求值即可.

解:(1)依题意得:

3a+b)(2a+b)﹣(a+b2

6a2+3ab+2ab+b2a22abb2

=(5a2+3ab)平方米.

答:绿化面积是(5a2+3ab)平方米;

2)当a2b4时,原式=20+2444(平方米).

答:绿化面积是44平方米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】荆州古城是闻名遐迩的历史文化名城,五一期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是(  )

A. 本次抽样调查的样本容量是5000

B. 扇形图中的m10%

C. 样本中选择公共交通出行的有2500

D. 五一期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,BEGF,∠1=∠3,∠DBC=70°,求∠EDB的大小.

阅读下面的解答过程,并填空(理由或数学式)

解:∵BEGF(已知)

∴∠2=∠3(   )

∵∠1=∠3(   )

∴∠1=(   )(   )

DE∥(   )(   )

∴∠EDB+∠DBC=180°(   )

∴∠EDB=180°﹣∠DBC(等式性质)

∵∠DBC=(   )(已知)

∴∠EDB=180°﹣70°=110°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCADE均为等边三角形,点OAC的中点,点D在射线BO上,连结OEEC,则∠ACE_____°;若AB1,则OE的最小值=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图 CE 平分∠ACDAE 平分∠BAC∠EAC+∠ACE90°

1)请判断 AB CD 的位置关系,并说明理由;

2)如图,在(1)的结论下,当∠E90°保持不变时,移动直角顶点 E,使∠MCE∠ECD 当直角顶点 E 点移动时,请确定∠BAE ∠MCD 的数量关系,并说明理由;

3)如图,在(1)的结论下,P 为线段 AC 上的一个定点,点 Q 为直线 CD 上的一个动点,当点 Q 在射线 CD 上运动时(点 C 除外)∠BAC ∠CPQ+∠CQP 有何数量关系?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰三角形ABC中,BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使ADE=30°.

(1)求证:ABD∽△DCE;

(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;

(3)当ADE是等腰三角形时,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】CD经过∠BCA顶点C的一条直线,CA=CBEF分别是直线CD上两点,且∠BEC=CFA=

1)若直线CD经过∠BCA的内部,且EF在射线CD上,请解决下面两个问题:

①如图1,若∠BCA=90°,=90°,则BE_____CFEF____.(填”““=”

②如图2,若<∠BCA180°,请添加一个关于∠与∠BCA关系的条件__________,使①中的两个结论仍然成立,并证明两个结论成立.

2)如图3,若直线CD经过∠BCA的外部,∠=BCA,请提出EFBEAF三条线段数量关系的合理猜想(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是(  )

A. 2 B. C. D.

查看答案和解析>>

同步练习册答案