精英家教网 > 初中数学 > 题目详情
13.已知关于x的一元二次方程:x2-kx+3=0有两个实根x1、x2,则x1x2=3.

分析 根据根与系数的关系即可得出x1x2=3,此题得解.

解答 解:∵关于x的一元二次方程:x2-kx+3=0有两个实根x1、x2
∴x1x2=3.
故答案为:3.

点评 本题考查了根与系数的关系,熟练掌握两根之积为$\frac{c}{a}$是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.实数-$\sqrt{4}$,0,$\frac{22}{7}$,$\root{3}{-125}$,0.1010010001…(两个1之间依次多一个0),$\frac{49}{121}$,$\frac{π}{2}$中,无理数有0.1010010001…(两个1之间依次多一个0),$\frac{π}{2}$,整数有-$\sqrt{4}$,0,$\root{3}{-125}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知多项式A=(x+5)2+(2-x)(3+x)-4.
(1)请化简多项式A;
(2)若(x+3)2=16,且x>0,试求A的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.将式子a2+2a(a+1)+(a+1)2分解因式的结果等于(2a+1)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图1,在平面直角坐标系中,点A,B的坐标分别为A(m,0),B(n,0)且m、n满足|m+2|+$\sqrt{5-n}$=0,现同时将点A,B分别向上平移3个单位,再向右平移2个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.
(1)求点C,D的坐标及四边形OBDC的面积;
(2)如图2,点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合),试探究∠DCP,∠BOP与∠CPO的数量关系,并说明理由;
(3)在四边形OBDC内是否存在一点P,连接PO,PB,PC,PD,使S△PCD=S△PBD;S△POB:S△POC=5:6,若存在这样一点,求出点P的坐标,若不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在矩形ABCD中,点E在BC边上,动点P以2厘米/秒的速度从点A出发,沿△AED的边按照A→E→D→A的顺序运动一周.设点P从A出发经x(x>0)秒后,△ABP的面积是y.
(1)若AB=6厘米,BE=8厘米,当点P在线段AE上时,求y关于x的函数表达式;
(2)已知点E是BC的中点,当点P在线段AE上时,y=$\frac{12}{5}$x;当点P在线段AD上时,y=32-4x.求y关于x的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.若|a-2|+2b2-4b+2=0,则a=2,b=1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.计算:($\sqrt{5}$+$\sqrt{3}$)($\sqrt{5}$-$\sqrt{3}$)=2;$\sqrt{7}$÷$\sqrt{\frac{1}{7}}$=7;±$\sqrt{9}$=±3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在平面直角坐标系中,点C在y轴上,点A(a,0)、点B(a-4,0),位于原点两侧,且∠ABC=60°,AE⊥BC,交y轴于点F,交BC于点E,点D在点B的左侧,且∠CDO=45°,AB=2BD
(1)直接写出∠BCD的度数、AB的长及点C的纵坐标(用含有a的式子表示)
①∠BCD=15°
②AB=4
③C(0,6-a)
(2)求∠ACD的度数;
(3)求点F的坐标(用含有a的式子表示)

查看答案和解析>>

同步练习册答案