【题目】点A、C为半径是8的圆周上两动点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆半径的中点上,则该菱形的边长为_____.
【答案】或
【解析】
过B作直径,连接AC交BO于E,如图①,根据已知条件得到BD=OB=4,求得OD、OE、DE的长,连接OC,根据勾股定理得到结论;如图②,BD=12,求得OD、OE、DE的长,连接OD,根据勾股定理得到结论.
过B作直径,连接AC交BO于E,
∵点B为的中点,
∴BD⊥AC,
如图①,
∵点D恰在该圆直径上,D为OB的中点,
∴BD=×8=4,
∴OD=OB-BD=4,
∵四边形ABCD是菱形,
∴DE=BD=2,
∴OE=2+4=6,
连接OC,
∵CE=,
在Rt△DEC中,由勾股定理得:DC=;
如图②,
OD=4,BD=8+4=12,DE=BD=6,OE=6-4=2,
由勾股定理得:CE=,
DC=,
故答案为:或.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,E为BC上一点,以CE为直径作⊙O,AB与⊙O相切于点D,连接CD,若BE=OE=2.
(1)求证:∠A=2∠DCB;
(2)求图中阴影部分的面积(结果保留π和根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个进行数值转换的运行程序如图所示,从“输入实数x”到“结果是否大于0”称为“一次操作”(1)判断:(正确的打“√”,错误的打“×”)
①当输入x=3后,程序操作仅进行一次就停止.
②当输入x为负数时,无论x取何负数,输出的结果总比输入数大.
(2)探究:是否存在正整数x,使程序能进行两次操作,并且输出结果小于12?若存在,请求出所有符合条件的x的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG
(1)判断CG与⊙O的位置关系,并说明理由;
(2)求证:2OB2=BCBF;
(3)如图2,当∠DCE=2∠F,CE=3,DG=2.5时,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:
“祖冲之奖”的学生成绩统计表:
分数分 | 80 | 85 | 90 | 95 |
人数人 | 4 | 2 | 10 | 4 |
根据图表中的信息,解答下列问题:
这次获得“刘徽奖”的人数是多少,并将条形统计图补充完整;
获得“祖冲之奖”的学生成绩的中位数是多少分,众数是多少分;
在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“”,“”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点用列表法或树状图法求这个点在第二象限的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是半圆弧上一动点,连接PA、PB,过圆心O作交PA于点C,连接已知,设O,C两点间的距离为xcm,B,C两点间的距离为ycm.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.
下面是小东的探究过程,请补充完整:
通过取点、画图、测量,得到了x与y的几组值,如下表:
0 | 1 | 2 | 3 | ||||
3 | 6 |
说明:补全表格时相关数据保留一位小数
建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;
结合画出的函数图象,解决问题:直接写出周长C的取值范围是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.
(1)求证:△AEF≌△DEB;
(2)证明四边形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】菱形ABCD中,E为对角线BD边上一点.
当时,把线段CE绕C点顺时针旋转得CF,连接DF.
求证:;
连FE成直线交CD于点M,交AB于点N,求证:;
当,E为BD中点时,如图2,P为BC下方一点,,,,求PC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com