精英家教网 > 初中数学 > 题目详情
10.如图,直线AB∥CD,若∠B=24°,∠D=33°,则∠BED等于(  )
A.24°B.33°C.57°D.67°

分析 过点E作EF∥AB,根据两直线平行,内错角相等可得∠BEF=∠B,∠DEF=∠D,然后根据∠BED=∠BEF+∠DEF计算即可得解.

解答 解:如图,过点E作EF∥AB,
∵AB∥CD,
∴AB∥EF∥CD,
∴∠BEF=∠B=24°,∠DEF=∠D=33°,
∴∠BED=∠BEF+∠DEF=24°+33°=57°.
故选C.

点评 本题考查了平行线的性质,此类题目,过拐点作平行线是解题的关键,也是本题的难点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠CAE=∠ADC.
(1)求证:AE是⊙O的切线;
(2)若⊙O的半径为2,∠B=60°,求图中阴影部分的面积.(结果保留根号和π)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在同一平面内∠ABC=45°,过点B的直线l⊥BC,点P为直线l上一动点.
(1)如图1,连接PC交AB于点Q,若BP=2,BC=3,求$\frac{PQ}{CQ}$的值.
(2)如图2,连接PC交AB于点Q,过点B作BD⊥PC于点D,当∠BPC=3∠C时,判断线段BD与线段CQ的数量关系,并证明你的结论.

(3)如图3,过点C作BC的垂线交BA于点A.当点P运动到某处时PC=AB,点M为线段AB上一点(不同于点A,B),作射线PM,作CN⊥PM于点N,设∠CPM=α,求∠BCN(用α表示)
(4)如图4,过点C作BC的垂线交BA于点A,过点C作CH⊥CP,并使CH=CP,连接AH交射线BC于点I.当点P在直线l上移动时,若AC=m,BI=n,线段BP的长度为2|m-n|(直接用m、n表示)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,AD⊥BC,垂足为D,BD=DC,则图中全等的三角形共有(  )
A.1对B.2对C.3对D.4对

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,其中等式右边是通常的加法、减法及乘法运算,比如2⊕5=2(2-5)+1=2(-3)+1=-6+1=-5,那么不等式3⊕x<13的解集为x>-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算
(1)|-1|+(-2)3+(7-π)0-($\frac{1}{3}$)-1;        
(2)(-2a)3•(a22÷a3
(3)(-2x)•(2x2y-4xy2)                
(4)(2x-y)(x+4y)
(5)(3a+b-2)(3a-b+2)
(6)10002-1002×998
(7)(x+1)(x2+1)(x4+1)(x-1)
(8)(3a+2)2(3a-2)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在平面直角坐标系中,点A(-3,4)关于y轴的对称点为点B,连接AB,反比例函数y=$\frac{k}{x}$(x>0)的图象经过点B,过点B作BC⊥x轴于点C,点P是该反比例函数图象上任意一点,过点P作PD⊥x轴于点D,点Q是线段AB上任意一点,连接OQ、CQ.
(1)点B的坐标是(3,4);k的值为12.
(2)判断△QOC与△POD的面积是否相等,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.与-2x2y合并同类项后得到5x2y的是(  )
A.-3x2yB.3x2yC.7yx2D.7xy2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.在A、B两地之间有汽车站C站(如图1),客车由A地驶向C站,货车由B地驶向A地,两车同时出发,匀速行驶.图2是客车、货车离C站的距离y1y2(千米)与行驶时间x(小时)之间的函数关系图象.
(1)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;
(2)客、货两车何时相遇?

查看答案和解析>>

同步练习册答案