¾«Ó¢¼Ò½ÌÍøÈçͼËùʾ£¬¹ýµãF£¨0£¬1£©µÄÖ±Ïßy=kx+bÓëÅ×ÎïÏßy=
14
x2½»ÓÚM£¨x1£¬y1£©ºÍN£¨x2£¬y2£©Á½µã£¨ÆäÖÐx1£¼0£¬x2£¾0£©£®
£¨1£©ÇóbµÄÖµ£®
£¨2£©Çóx1•x2µÄÖµ£®
£¨3£©·Ö±ð¹ýM£¬N×÷Ö±Ïßl£ºy=-1µÄ´¹Ïߣ¬´¹×ã·Ö±ðÊÇ M1ºÍN1£®Åжϡ÷M1FN1µÄÐÎ×´£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
£¨4£©¶ÔÓÚ¹ýµãFµÄÈÎÒâÖ±ÏßMN£¬ÊÇ·ñ´æÔÚÒ»Ìõ¶¨Ö±Ïßm£¨mÊdz£Êý£©£¬Ê¹mÓëÒÔMNΪֱ¾¶µÄÔ²ÏàÇУ¿Èç¹ûÓУ¬ÇëÇó³öÕâÌõÖ±ÏßmµÄ½âÎöʽ£»Èç¹ûûÓУ¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©°ÑµãFµÄ×ø±ê´úÈëÖ±Ïß¿ÉÒÔÈ·¶¨bµÄÖµ£®
£¨2£©ÁªÁ¢Ö±ÏßÓëÅ×ÎïÏߣ¬´úÈ루1£©ÖÐÇó³öµÄbÖµ£¬ÀûÓøùÓëϵÊýµÄ¹Øϵ¿ÉÒÔÇó³öx1•x2µÄÖµ£®
£¨3£©È·¶¨M1£¬N1µÄ×ø±ê£¬ÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽ£¬·Ö±ðÇó³öM1F2£¬N1F2£¬M1N12£¬È»ºóÓù´¹É¶¨ÀíÅжÏÈý½ÇÐεÄÐÎ×´£®
£¨4£©¸ù¾ÝÌâÒâ¿ÉÖªy=-1×ÜÓë¸ÃÔ²ÏàÇУ®
½â´ð£º½â£º£¨1£©¡ßÖ±Ïßy=kx+b¹ýµãF£¨0£¬1£©£¬
¡àb=1£»

£¨2£©¡ßÖ±Ïßy=kx+bÓëÅ×ÎïÏßy=
1
4
x2½»ÓÚM£¨x1£¬y1£©ºÍN£¨x2£¬y2£©Á½µã£¬
¡à¿ÉÒԵóö£ºkx+b=
1
4
x2£¬
ÕûÀíµÃ£º
1
4
x2-kx-1=0£¬
¡ßa=
1
4
£¬c=-1£¬
¡àx1•x2=-4£¬

£¨3£©¡÷M1FN1ÊÇÖ±½ÇÈý½ÇÐΣ¨FµãÊÇÖ±½Ç¶¥µã£©£®
ÀíÓÉÈçÏ£º¡ßFM12=FF12+M1F12=x12+4£¬
FN12=FF12+F1N12=x22+4£¬
M1N12=£¨x2-x1£©2=x12+x22-2x1x2=x12+x22+8£¬
¡àFM12+FN12=M1N12£¬
¡à¡÷M1FN1ÊÇÒÔFµãΪֱ½Ç¶¥µãµÄÖ±½ÇÈý½ÇÐΣ®

¾«Ó¢¼Ò½ÌÍø£¨4£©·ûºÏÌõ¼þµÄ¶¨Ö±Ïßm¼´ÎªÖ±Ïßl£ºy=-1£®
¹ýM×÷MH¡ÍNN1ÓÚH£¬MN2=MH2+NH2=£¨x1-x2£©2+£¨y1-y2£©2£¬
=£¨x1-x2£©2+[£¨kx1+1£©-£¨kx2+1£©]2£¬
=£¨x1-x2£©2+k2£¨x1-x2£©2£¬
=£¨k2+1£©£¨x1-x2£©2£¬
=£¨k2+1£©[£¨x1+x2£©2-4x1•x2]
=£¨k2+1£©£¨16k2+16£©
=16£¨k2+1£©2£¬
¡àMN=4£¨k2+1£©£¬
·Ö±ðÈ¡MNºÍM1N1µÄÖеãP£¬P1£¬
PP1=
1
2
£¨MM1+NN1£©=
1
2
£¨y1+1+y2+1£©=
1
2
£¨y1+y2+2£©=
1
2
£¨y1+y2£©+1=
1
2
k£¨x1+x2£©+2=2k2+2£¬
¡àPP1=
1
2
MN
¼´Ï߶ÎMNµÄÖе㵽ֱÏßlµÄ¾àÀëµÈÓÚMN³¤¶ÈµÄÒ»°ë£®
¡àÒÔMNΪֱ¾¶µÄÔ²ÓëlÏàÇУ®
¼´¶ÔÓÚ¹ýµãFµÄÈÎÒâÖ±ÏßMN£¬´æÔÚÒ»Ìõ¶¨Ö±Ïßm£¬Ê¹mÓëÒÔMNΪֱ¾¶µÄÔ²ÏàÇУ¬ÕâÌõÖ±ÏßmµÄ½âÎöʽÊÇy=-1£®
µãÆÀ£º±¾Ì⿼²éµÄÊǶþ´Îº¯ÊýµÄ×ÛºÏÌ⣬
£¨1£©ÓɵãFµÄ×ø±êÇó³öbµÄÖµ£®
£¨2£©½áºÏÖ±ÏßÓëÅ×ÎïÏߵĽâÎöʽ£¬ÀûÓøùÓëϵÊýµÄ¹ØϵÇó³ö´úÊýʽµÄÖµ£®
£¨3£©ÓÃÁ½µã¼äµÄ¾àÀ빫ʽ£¬ÅжÏÈý½ÇÐεÄÐÎ×´£®
£¨4£©¸ù¾ÝµãÓëÔ²µÄλÖÃÅжÏÖ±ÏßÓëÔ²µÄλÖã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

4¡¢ÈçͼËùʾ£¬¹ýµãP»­Ö±ÏßaµÄƽÐÐÏßbµÄ×÷·¨µÄÒÀ¾ÝÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬¹ýµãA£¨a£¬0£©£¨a£¾0£©ÇÒƽÐÐÓÚyÖáµÄÖ±Ïß·Ö±ðÓëÅ×ÎïÏßy=x2¼°y=
14
x2½»ÓÚC¡¢B¾«Ó¢¼Ò½ÌÍøÁ½µã£®
£¨1£©ÇóµãC¡¢BµÄ×ø±ê£»
£¨2£©ÇóÏ߶ÎABÓëBCµÄ±È£»
£¨3£©ÈôÕý·½ÐÎBCDEµÄÒ»±ßDEÓëyÖáÖغϣ¬Çó´ËÕý·½ÐÎBCDEµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬¹ýµãD·Ö±ð×÷DE¡ÎBC£¬½»ACÓÚE£¬×÷DF¡ÎAB£¬½»BCÓÚF£¬ÈôAD£ºDC=1£º2£¬Ôò¡÷ADE£¬¡÷DCF£¬Æ½ÐÐËıßÐÎDEBFµÄÃæ»ý±ÈÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬¹ýµãA£¨1£¬0£©×÷´¹Ö±xÖáµÄÖ±Ïßl£¬·Ö±ð½»º¯Êýy1=x£¨x¡Ý0£©£¬y2=
4x
£¨x£¾0£©Í¼ÏóÓÚB¡¢CÁ½µã£¬ÔòBC=
3
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸