如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,点P、Q同时从点C出发,以1cm/s的速度分别沿CA、CB匀速运动,当点Q到达点B时,点P、Q同时停止运动.过点P作AC的垂线l交AB于点R,连接PQ、RQ,并作△PQR关于直线l对称的图形,得到△PQ'R.设点Q的运动时间为t(s),△PQ'R与△PAR重叠部分的面积为S(cm2).
(1)t为何值时,点Q' 恰好落在AB上?
(2)求S与t的函数关系式,并写出t的取值范围.
(3)S能否为?若能,求出此时t的值;若不能,请说明理由.
科目:初中数学 来源: 题型:
如图4所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是( )
A.∠3=∠4 B.∠A=∠DCEC. ∠D=∠DCE D.∠D+∠ACD=180°
查看答案和解析>>
科目:初中数学 来源: 题型:
某德阳特产专卖店销售“中江柚”,已知“中江柚”的进价为每个10元,现在的售价是每个16元,每天可卖出120个.市场调查反映:如调整价格,每涨价1元,每天要少卖出10个;每降价1元,每天可多卖出30个.
(1)如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价多少元?
(2)请你帮专卖店老板算一算,如何定价才能使利润最大,并求出此时的最大利润?
查看答案和解析>>
科目:初中数学 来源: 题型:
抛物线与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.点P在抛物线上,直线PQ//BC交x轴于点Q,连接BQ.
(1)若含45°角的直角三角板如图所示放置,其中一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上,求直线BQ的函数解析式;
(2)若含30°角的直角三角板的一个顶点与点C重合,直角顶点D在直线BQ上(点D不与点Q重合),另一个顶点E在PQ上,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
已知,抛物线经过A(-1,0),C(2,)两点,
与x轴交于另一点B.
(1)求此抛物线的解析式;
(2)若抛物线的顶点为M,点P为线段OB上一动点 (不与点B重合),点Q在线段MB上移动,且∠MPQ=45°,设线段OP=x,MQ=,求y2与x的函数关系式,
并直接写出自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
关于二次函数,以下结论:① 抛物线交轴有两个不同的交点;②不论k取何值,抛物线总是经过一个定点;③设抛物线交轴于A、B两点,若AB=1,则k=9;;④ 抛物线的顶点在图像上.其中正确的序号是( )
A.①②③④ B.②③ C.②④ D.①②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com