精英家教网 > 初中数学 > 题目详情
已知:矩形ABCD中,对角线AC与BD交于点O,CE平分∠BCD,交AB于点E,∠OCE=15°,求∠BEO的度数.
分析:根据矩形性质得出∠DCB=90°,AB∥CD,AO=OC=OB=OD,求出BC=BE,得出等边三角形COB,得出BO=OE,求出∠OBE=30°,根据等腰三角形性质和三角形内角和定理求出即可.
解答:解:∵四边形ABCD是矩形,
∴∠ACB=90°DC∥AB,
∴∠DCE=∠CEB,
∵CE平分∠DCB,
∴∠BCE=∠DCE=45°,
∴∠BCE=∠CEB,
∴BE=BC,
∵∠DCE=45°,∠OCE=15°,
∴∠DCO=30°,
∴∠BCO-90°-30°=60°,
∵四边形ABCD是矩形,
∴AC=2AO=2OC,BD=2BO=2DO,AC=BD,
∴AO=OC=CO=BO,
∴△BOC是等边三角形,
∴BC=OB=BE,
∵DC∥AB,
∴∠CAB=∠DBA=30°,
∴∠BEO=∠BOE=
1
2
(180°-∠DBA)=
1
2
×(180°-30°)=75°.
点评:本题考查了矩形性质,平行线性质,等腰三角形性质和判定,三角形内角和定理的应用,主要考查学生综合运用性质进行推理和计算的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:矩形ABCD中,AB=1,点M在对角线AC上,直线l过点M且与AC垂直,与AD相交于点E.
(1)如果直线l与边BC相交于点H(如图1)AM=
1
3
AC且AD=a,求的AE长(用含a的代数式表示);
(2)在(1)中,直线l把矩形分成两部分的面积比为2:5,求a的值;
(3)若AM=
1
4
AC,且直线l经过点B(如图2),求AD的长;
(4)如果直线l分别与边AD,AB相交于点E,F,AM=
1
4
AC,设AD的长为x,△AEF的面积为y,求y与x的函数关系式,并指出x的取值范围(求x的取值范围可不写过程).精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:矩形ABCD中,AD=2,点E、F分别在边CD、AB上,且四边形AECF是菱形精英家教网,tan∠DAE=
12
.求:
(1)DE的长;
(2)菱形AECF的面积?

查看答案和解析>>

科目:初中数学 来源: 题型:

23、已知在矩形ABCD中,AB=3,BC=6,如果以AD为直径作圆,那么与这个圆相切的矩形的边共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在矩形ABCD中.
(1)设矩形的面积为6,AD=y,AB=x(0<x≤6),写出y与x的函数关系,并在直角坐标系中画出此函数的图象.
(2)如图矩形纸片ABCD,AB=4,AD=3.折叠纸片使得AD边与对角线BD重合,折痕为DG,点A落在A′处,求△A′BG的面积与矩形ABCD的面积的比是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,矩形ABCD中,延长BC至E,使BE=BD,F为DE的中点,连结AF、CF.
(1)若AB=3,AD=4,求CF的长;
(2)求证:∠ADB=2∠DAF.

查看答案和解析>>

同步练习册答案