精英家教网 > 初中数学 > 题目详情
如图,已知反比例函数y=
k
x
和一次函数y=2x-1,其中反比例函数的图象经过点(2,
1
2
).
(1)求反比例函数的解析式;
(2)如图,已知点A在第一象限,且同时在上述两个函数的图象上,求点A的坐标;
(3)在(2)的条件下,在x轴上是否存在点P,使△AOP为等腰三角形?若存在,请直接写出所有符合条件的P点坐标;若不存在,请说明理由.
分析:(1)将已知点坐标代入反比例解析式中求出k的值,即可确定出反比例解析式;
(2)联立反比例与一次函数解析式,即可求出A的坐标;
(3)存在,分三种情况考虑,以O为圆心OA长为半径画弧,与x轴交于点P1,P2;以A为圆心,AO长为半径画弧,与x轴交于P3点;做出线段OA的垂直平分线,与x轴交于P4点,分别求出坐标即可.
解答:解:(1)将(2,
1
2
)代入反比例解析式得:k=1,
故反比例解析式为y=
1
x


(2)联立得:
y=
1
x
y=2x-1

消去y得:2x-1=
1
x
,整理得:2x2-x-1=0,即(2x+1)(x-1)=0,
解得:x=-
1
2
(不合题意,舍去)或x=1,
将x=1代入y=2x-1得:y=1,
则A(1,1);

(3)存在,分三种情况考虑,以O为圆心OA长为半径画弧,与x轴交于点P1,P2
∵A(1,1),
∴OA=
2

∴OP1=OP2=
2

∴点P1(-
2
,0),P2
2
,0);
以A为圆心,AO长为半径画弧,与x轴交于P3点,此时P3(2,0);
做出线段OA的垂直平分线,与x轴交于P4点,此时P4(1,0),
综上,满足题意的P点坐标为(-
2
,0)或(
2
,0)或(2,0)或(1,0).
点评:此题考查了反比例综合题,涉及的知识有:待定系数法求函数解析式,两函数交点坐标求法,等腰三角形的性质,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
m
x
图象与一次函数y=kx+b的图象均经过A(-1,4)和B(a,
4
5
)两点,
(1)求B点的坐标及两个函数的解析式;
(2)若一次函数y=kx+b的图象与x轴交于点C,求C点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
kx
(k>0)的图象经过点A(2,m),过点A作AB⊥x轴于点B,且S△AOB=3.若一次函数y=ax+1的图象经过点A,并且与x轴相交于点C,求AO:AC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
kx
的图象与一次函数y=ax+b的图象交于M(2,m)和N(-1,-4)两点.
(1)求这两个函数的解析式;
(2)求△MON的面积;
(3)请判断点P(4,1)是否在这个反比例函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数y1=
kx
和一次函数y2=ax+b的图象相交于点A和点D,且点A的横坐标为1,点D的纵坐标为-1.过点A作AB⊥x轴于点B,△AOB的面积为1.
(1)求反比例函数和一次函数的解析式.
(2)若一次函数y2=ax+b的图象与x轴相交于点C,求∠ACO的度数.
(3)结合图象直接写出:当y1>y2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数y=
k
x
的图象经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,一2).
(1)求直线y=ax+b的解析式;
(2)设直线y=ax+b与x轴交于点M,求AM的长;
(3)在双曲线上是否存在点P,使得△MBP的面积为8?若存在请求P点坐标;若不存在请说明理由.

查看答案和解析>>

同步练习册答案