15£®½«Á½¿éÈ«µÈµÄº¬30¡ã½ÇµÄÈý½Ç³ß°´Èçͼ1ËùʾµÄ·½Ê½°Ú·ÅÔÚÒ»Æð£¬ËüÃǽ϶̵ÄÖ±½Ç±ßBC=EC=3£®
£¨1£©½«¡÷ECDÑØÖ±ÏßlÏò×óƽÒƵ½Í¼2µÄλÖã¬Ê¹µãE¡äÂäÔÚABÉÏ£¬ÔòCC¡ä=3-$\sqrt{3}$£»
£¨2£©½«¡÷ECDÈƵãCÄæʱÕëÐýתµ½Í¼3µÄλÖã¬Ê¹µãE¡äÂäÔÚABÉÏ£¬Ôò¡÷ECDÈƵãCÐýתµÄ¶ÈÊýΪ30¡ã£»
£¨3£©½«¡÷ECDÑØÖ±ÏßAC·­ÕÛµ½Í¼4µÄλÖã¬ED¡äÓëABÏཻÓÚµãF£¬ÇóÖ¤£ºAF=FD¡ä£®

·ÖÎö £¨1£©ÏÈÅжϳöC'E'=3£¬ÔÙÀûÓú¬30¶È½ÇµÄÖ±½ÇÈý½ÇÐεÄÐÔÖʵóöBE'=2BC£¬×îºóÓù´¹É¶¨ÀíÇó³öBC'¼´¿ÉµÃ³ö½áÂÛ£®
£¨2£©¡÷ECDÈƵãCÐýתµÄ¶ÈÊý¼´¡ÏECE'µÄ¶ÈÊý£»Ò׵㺡ÏECE¡ä=¡ÏBAC=30¡ã£»
£¨3£©¸ù¾ÝÌõ¼þ£¬Ö¤Ã÷¡÷AEF¡Õ¡÷D¡äBF½ø¶øµÃ³öAF=FD¡ä

½â´ð £¨1£©½â£ºCC¡ä=3-$\sqrt{3}$£®
ÀíÓÉÈçÏ£ºÓÉƽÒÆÖª£¬C'E'¡ÎAC£¬C'E'=CE=3£¬
¡à¡ÏBE'C'=¡ÏA=30¡ã£¬
¡ßBC=EC=3£¬
ÔÚRt¡÷BC'E'ÖУ¬¡ÏBE'C'=30¡ã£¬
¸ù¾ÝÔÚÖ±½ÇÈý½ÇÐÎÖУ¬30¡ã½ÇËù¶ÔµÄÖ±½Ç±ßÊÇб±ßµÄÒ»°ë£¬µÃBE'=2BC'
¡àBE'2-BC'2=C'E'2£¬
¼´£º4BC'2-BC'2=9£¬
¡àBC'=$\sqrt{3}$£¬
¡àCC¡ä=BC-BC'=3-$\sqrt{3}$£»
¹Ê´ð°¸Îª£º3-$\sqrt{3}$£»

£¨2£©½â£º¡÷ECDÈƵãCÐýתµÄ¶ÈÊý¼´¡ÏECE¡äµÄ¶ÈÊý£»
¡ß¡ÏABC=60¡ã£¬BC=CE¡ä=3£¬AB=6£¬
¡à¡÷E¡äBCÊǵȱßÈý½ÇÐΣ¬
¡àBC=E¡äC=E¡äB=3£¬
¡àAE¡ä=E¡äC=3£¬
¡à¡ÏE¡äAC=¡ÏE¡äCA£¬
¡à¡ÏECE¡ä=¡ÏBAC=30¡ã£»
¹Ê´ð°¸Îª£º30¡ã£»

£¨3£©Ö¤Ã÷£ºÔÚ¡÷AEFºÍ¡÷D¡äBFÖУ¬
¡ßAE=AC-EC£¬D¡äB=D¡äC-BC£¬
ÓÖ¡ßAC=D¡äC£¬EC=BC£¬
¡àAE=D¡äB£¬
ÓÖ¡ß¡ÏAEF=¡ÏD¡äBF=180¡ã-60¡ã=120¡ã£¬¡ÏA=¡ÏCD¡äE=30¡ã£¬
¡à¡÷AEF¡Õ¡÷D¡äBF£¬
¡àAF=FD'

µãÆÀ ±¾Ì⿼²éƽÒÆ¡¢ÐýתµÄÐÔÖÊ£»Æ½ÒƵĻù±¾ÐÔÖÊÊÇ£º¢ÙƽÒƲ»¸Ä±äͼÐεÄÐÎ×´ºÍ´óС£»¢Ú¾­¹ýƽÒÆ£¬¶ÔÓ¦µãËùÁ¬µÄÏ߶ÎƽÐÐÇÒÏàµÈ£¬¶ÔÓ¦Ï߶ÎƽÐÐÇÒÏàµÈ£¬¶ÔÓ¦½ÇÏàµÈ£®Ðýת±ä»¯Ç°ºó£¬¶ÔÓ¦Ï߶Ρ¢¶ÔÓ¦½Ç·Ö±ðÏàµÈ£¬Í¼ÐεĴóС¡¢ÐÎ×´¶¼²»¸Ä±ä£¬Á½×é¶ÔÓ¦µãÁ¬ÏߵĽ»µãÊÇÐýתÖÐÐÄ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÏÂÁÐ˵·¨´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®$\sqrt{3}$ÊÇ3µÄƽ·½¸ùB£®|$\sqrt{2}$-1|=$\sqrt{2}$-1
C£®-$\sqrt{5}$µÄÏà·´ÊýÊÇ$\sqrt{5}$D£®´ø¸ùºÅµÄÊý¶¼ÊÇÎÞÀíÊý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®¹Û²ìͼÐΣ¬¸ù¾ÝÄã·¢ÏֵĹæÂÉÌî¿Õ£¬Í¼¢ÜÖеÄÊýxÊÇ30£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Êé°üÀïÓÐÊýѧÊé2±¾£¬Ó¢ÓïÊé3±¾£¬ÓïÎÄÊé4±¾£¬´ÓÖÐÈÎÒâ³éÈ¡Ò»±¾ÊÇÊýѧÊéµÄ¸ÅÂÊÊÇ$\frac{2}{9}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖª£ºÈçͼ¢Ù£¬Á½¿éÈ«µÈµÄб±ßΪ10cm£¬º¬30¡ã½ÇµÄÖ±½Ç¡÷ABDºÍÖ±½Ç¡÷ACDÈçͼ·ÅÖã¬ÔÚ½«¡÷ACDÒÔ1cm/sµÄËÙ¶ÈÑØACµÄ·½ÏòÔÈËÙƽÒÆÖÁ¡÷PNMλÖõÄͬʱ£¬µãQ´ÓµãC³ö·¢£¬ÑØ×ÅCB·½ÏòÒ²ÒÔ1cm/sµÄËÙ¶ÈÔÈËÙÒƶ¯£¬Èçͼ¢Ú£¬µ±PÓëCÖغÏʱ£¬¡÷PNMÒÔ¼°µãQÍ£Ö¹Òƶ¯£¬ÉèAP=x£¬Á¬½ÓPQ¡¢MQ¡¢MC£®
£¨1£©µ±xΪºÎֵʱ£¬PQ¡ÎMN£¿
£¨2£©Éè¡÷QMCºÍËıßÐÎABQPµÄÃæ»ý±ÈΪy£¨cm2£©£¬ÇóyÓëxÖ®¼äµÄº¯Êý¹Øϵʽ£»
£¨3£©Çóʹ¡÷PQMΪֱ½ÇÈý½ÇÐÎʱAPµÄÖµ£¨Èô²»¿ÉÄÜ£¬Çë˵Ã÷ÀíÓÉ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®¼ÆËã
£¨1£©£¨-2x2y£©•£¨$\frac{1}{2}$y2-3x2y£©£»
£¨2£©£¨x+2£©£¨3x-1£©£»
£¨3£©£¨3x+4y£©2-£¨5y+3x£©£¨3x-5y£©£»
£¨4£©£¨-3x-2y+1£©£¨1-2y+3x£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ$\frac{a-1}{a-2\sqrt{a}+1}$$+\frac{2\sqrt{a}-a}{\sqrt{a}-2}¡Â\sqrt{a}$£¬²¢Çóa=1$\frac{1}{2}$ʱµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®¼ÆË㣺£¨$\frac{1}{3}$£©-1+16¡Â£¨-2£©3+£¨2005-¦Ð£©0-$\sqrt{3}$tan30¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÔÚÉäÏßAPÉϽØÈ¡AB=9£¬ÔÚÉäÏßBAÉÏ˳´Î½ØÈ¡BC=CD=2£¬ÄÇôÏ߶ÎAD=1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸