分析 由圆周角定理得出∠ACB=90°,在Rt△ACB中运用三角函数求出BC=3,再由勾股定理求出AC=4,得出cos∠CAB=$\frac{AC}{AB}$=$\frac{4}{5}$,根据切线的性质得到∠ABF=90°,然后在Rt△ABF中运用三角函数求出AF=$\frac{25}{4}$,即可求出CF的长.
解答 解:∵AB为直径,
∴∠ACB=90°,
在Rt△ACB中,sin∠CAB=$\frac{BC}{AB}$=$\frac{3}{5}$,AB=5,
∴BC=3,
∴AC=$\sqrt{A{B}^{2}-B{C}^{2}}$=4,
∴cos∠CAB=$\frac{AC}{AB}$=$\frac{4}{5}$,
∵BF为⊙O的切线,
∴AB⊥BF,
∴∠ABF=90°,
在Rt△ABF中,cos∠CAB=$\frac{AB}{AF}$=$\frac{4}{5}$,
∴AF=$\frac{5}{4}$×5=$\frac{25}{4}$,
∴CF=AF-AC=$\frac{25}{4}$-4=$\frac{9}{4}$.
点评 本题考查了切线的性质、圆周角定理、三角函数、勾股定理;熟练掌握切线的性质,并能进行推理论证与计算是解决问题的关键.
科目:初中数学 来源: 题型:选择题
A. | $\frac{180}{x}-\frac{200}{(1-25%)x}$=30 | B. | $\frac{180}{x}-\frac{200}{(1-25%)x}=\frac{30}{60}$ | ||
C. | $\frac{180}{x}-\frac{200}{(1+25%)x}=30$ | D. | $\frac{180}{x}-\frac{200}{(1+25%)x}=\frac{30}{60}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
月份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
价格y1(元/件) | 560 | 580 | 600 | 620 | 640 | 660 | 680 | 700 | 720 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com