分析 (1)设CD与AB之间的距离为x,则在Rt△BCF和Rt△ADE中分别用x表示BF,AE,又AB=AE+EF+FB,代入即可求得x的值;
(2)在Rt△BCF和Rt△ADE中,分别求出BC、AD的长度,求出AD+DC+CB-AB的值即可求解.
解答 解:(1)CD与AB之间的距离为x,
则在Rt△BCF和Rt△ADE中,
∵$\frac{CF}{BF}$=tan37°,$\frac{DE}{EA}$=tan67°,
∴BF=$\frac{CF}{tan37°}$≈$\frac{4}{3}$x,AE=$\frac{DE}{tan67°}$≈$\frac{5}{12}$x,
又∵AB=62,CD=20,
∴$\frac{4}{3}$x+$\frac{5}{12}$x+20=62,
解得:x=24,
答:CD与AB之间的距离约为24米;
(2)在Rt△BCF和Rt△ADE中,
∵BC=$\frac{CF}{sin37°}$≈$\frac{24}{\frac{3}{5}}$=40,
AD=$\frac{DE}{sin67°}$≈$\frac{24}{\frac{12}{13}}$=26,
∴AD+DC+CB-AB=40+20+26-62=24(米),
答:他沿折线A→D→C→B到达超市比直接横穿马路多走约24米.
点评 本题考查了解直角三角形,难度适中,解答本题的关键是在直角三角形中运用解直角三角形的知识求出各边的长度.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (b,a) | B. | (-a,b) | C. | (a,-b) | D. | (-a,-b) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ∠BAD=∠C | B. | ∠ADB=∠BAC | C. | AB2=BD•BC | D. | $\frac{BD}{AB}$=$\frac{AB}{AC}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com