精英家教网 > 初中数学 > 题目详情

(2005 福州)已知:如图所示,AB是⊙O的直径,PAB上的一点(与AB不重合),QPAB,垂足为P,直线QA交⊙OC点,过C点作⊙O的切线交直线QP于点D,则△CDQ是等腰三角形,对上述命题证明如下:

证明 连接OC.∵OA=OC=OC,∴∠A==∠1.

CD切⊙OC点,∴∠OCD=90=90°,

∴∠1+∠2=90°,∴∠A+∠2=90°,

在Rt△QPA中,∠QPA=90=90°,

∴∠A+∠Q=90=90°,∴∠2=∠Q.∴DQ=DC=DC

即△CDQ是等腰三角形.

问题 对上述命题,当点PBA的延长线上时,其他条件不变,如图所示,结论“△CDQ是等腰三角形”还成立吗?若成立,请给予证明;若不成立,请说明理由.

 

 

答案:略
解析:

解 结论“△CDQ是等腰三角形”还成立.

证明:如图连OC ∵OA=OC,∴∠1=2

CD切⊙OC,∴∠OCD=90°,

∴∠DCQ+∠2=90°.

QPPB,∴∠3+∠Q=90°.

又∵∠1=3,∴∠Q=DCQ,∴DQ=DC

即△CDQ是等腰△.


练习册系列答案
相关习题

同步练习册答案